\qquad
\qquad
\qquad

Lesson Practice B

8-2 Multiplying and Dividing Rational Expressions

Simplify. Identify any x-values for which the expression is undefined.

1. $\frac{x^{2}+3 x+2}{x^{2}-3 x-4}$
2. $\frac{4 x^{6}}{2 x^{4}}$
3. $\frac{x^{2}-x^{3}}{2 x^{2}-5 x+3}$
4. $\frac{x^{3}+x^{2}-20 x}{x^{2}-16}$
5. $\frac{3 x^{2}-9 x-12}{6 x^{2}+9 x+3}$
6. $\frac{9-3 x}{15-2 x-x^{2}}$

Multiply. Assume all expressions are defined.
7. $\frac{4 x+16}{2 x+6} \cdot \frac{x^{2}+2 x-3}{x+4}$
8. $\frac{x+3}{x-1} \cdot \frac{x^{2}-2 x+1}{x^{2}+5 x+6}$

Divide. Assume all expressions are defined.
9. $\frac{5 x^{6}}{x^{2} y} \div \frac{10 x^{2}}{y}$
10. $\frac{x^{2}-2 x-8}{x^{2}-2 x-15} \div \frac{2 x^{2}-8 x}{2 x^{2}-10 x}$

Solve. Check your solution.
11. $\frac{x^{2}+x-12}{x-3}=15$
12. $\frac{2 x^{2}+8 x-10}{2 x^{2}+14 x+20}=4$

Solve.
13. The distance, d, traveled by a car undergoing constant acceleration, a, for a time, t, is given by $d=v_{0} t+\frac{1}{2} a t^{2}$, where v_{0} is the initial velocity of the car. Two cars are side by side with the same initial velocity. One car accelerates, $a=A$, and the other car does not accelerate, $a=0$. Write an expression for the ratio of the distance traveled by the accelerating car to the distance traveled by the nonaccelerating car as a function of time.

Practice A

8-2 Multiplying and Dividing Rational Expressions
Answer each question.

1. What could make a rational expression undefined?

Possible answer: If the denominator is 0 , then the expression is undefined because division by 0 is impossible.
2. What value of x gives a denominator equal to 0 for the expression $\frac{x+4}{x-3}$? $x=3$

Simplify. Identify any x-values for which the expression is undefined.

3. $\frac{5 x}{x^{3}}$	$\frac{5}{x^{2}} ; x \neq 0$	4. $\frac{x^{2}+3 x}{x^{3}}$	$\frac{x+3}{x^{2}} ; x \neq 0$
5. $\frac{4 x+12}{6 x+18}$		6. $\frac{2 x+7}{x+3}$	
	$\frac{2}{3} ; x \neq-3$		$\frac{2 x+7}{x+3} ; x \neq-3$

Complete. Assume that all expressions are defined.
7. $\frac{3 x}{2 y} \cdot \frac{2}{y}=\frac{3 x}{y^{2}}$
8. $\frac{2 x^{5}}{9 y^{4}} \cdot \frac{3 y^{2}}{x}=\frac{2 x^{4}}{3 y^{2}}$
9. $\frac{x+2}{x-1} \cdot \frac{4 x-4}{(x+2)(x-2)}=\frac{4}{x-2}$
10. $\frac{x^{3}+8 x^{2}}{x} \cdot \frac{x}{x^{3}+4 x^{2}}=\frac{x+8}{x+4}$
11. $\frac{2 x}{3 y} \div \frac{2 x^{2}}{3 y^{2}}=\frac{2 x}{3 y} \cdot \frac{3 y^{2}}{2 x^{2}}=\frac{y}{x}$
12. $\frac{x+1}{x-2} \div \frac{5(x+1)}{2(x+2)}=\frac{x+1}{x-2} \cdot \frac{2(x+2)}{5(x+1)}=\frac{2 x+4}{5 x-10}$
13. $\frac{2 y}{x+4} \div \frac{4 y^{2}}{x+4}=\frac{2 y}{x+4} \cdot \frac{x+4}{4 y^{2}}=\frac{1}{2 y}$

Solve.

14. $\frac{2 x^{2}+2 x}{x+1}=8$	15. $\frac{9 x+9}{x^{3}+x^{2}}=1$
$x=4$	$x=3$
16. $\frac{5 x^{2}+15 x}{x+3}=10$	17. $\frac{x^{2}+3 x+2}{2 x^{2}+4}=1$
$x=2$	$x=1$

Practice C

8-2 Multiplying and Dividing Rational Expressions
Multiply. Assume all expressions are defined

2. | $\frac{2 x+14}{x^{2}-25} \cdot \frac{8 x+40}{6 x+42}$ |
| :--- |
| 4. $\frac{\frac{8}{3(x-5)}}{\frac{3 x^{2}+15 x-18}{36 x^{3}-12 x^{2}} \cdot \frac{9 x^{3}-3 x^{2}}{9 x^{2}+36 x-108}}$ |
| $\frac{x-1}{12(x-2)}$ |

Divide. Assume all expressions are defined.

$$
\text { 6. } \begin{gathered}
\frac{3 x^{2}+6 x-24}{x^{2}-x-20} \div \frac{3 x^{3}-9 x^{2}+6 x}{x} \\
\frac{1}{(x-5)(x-1)} \\
\text { 8. } \frac{4 x^{2}-12 x-72}{8 x^{2}+32 x-40 \div \frac{x^{2}-9 x+18}{x^{2}+2 x-15}} \\
\frac{x+3}{2(x-1)}
\end{gathered}
$$

Solve. Check your solution.
9. $\frac{4 x^{2}-4 x-168}{2 x+12}=20$
10. $\frac{x^{2}-3 x-18}{x+3}=13$
11. $\frac{x=17}{\frac{x^{2}+3 x-10}{x-2}=7}$
12. $\frac{x=19}{\frac{2 x^{2}-18 x+40}{2 x-10}=5}$
No solution
$x=9$

Solve.
13. The formula for the volume of a cylinder is $\pi r^{2} h$ and the formula for its surface area is $2 \pi r^{2}+2 \pi r h$, where r is the radius and h is the height. A cylindrical industrial storage tank has a surface area to-volume ratio of 3 . If the height of the cylindrical tank is 2 meters, what is the radius?

1 meter
\square

Practice B

Multiplying and Dividing Rational Expressions

Simplify. Identify any x-values for which the expression is undefined

1. $\frac{x^{2}+3 x+2}{x^{2}-3 x-4}$

$$
\text { 2. } \frac{4 x^{6}}{2 x^{4}}
$$

3. $\frac{x^{2}-x^{3}}{2 x^{2}-5 x+3}$
$\frac{x+2}{x-4} ; x \neq-1$,

$$
\frac{-x^{2}}{2 x-3} ; x \neq 1
$$

$$
\text { 6. } \frac{x \neq \frac{3}{2}}{15-2 x-x^{2}}
$$

$$
\frac{x^{2}+5 x}{x+4} ; x \neq 4
$$

$$
x \neq-4
$$

$$
\text { 5. } \begin{gathered}
\frac{2 x^{2} ; x \neq 0}{3 x^{2}-9 x-12} \\
6 x^{2}+9 x+3 \\
\frac{x-4}{2 x+1} ; x \neq-1 \\
x \neq-\frac{1}{2} \\
\hline
\end{gathered}
$$

$$
\begin{gathered}
\frac{3}{x+5} ; x \neq 3 \\
x \neq-5
\end{gathered}
$$

Multiply. Assume all expressions are defined.

7. $\frac{4 x+16}{2 x+6} \cdot \frac{x^{2}+2 x-3}{x+4}$	8. $\frac{x+3}{x-1} \cdot \frac{x^{2}-2 x+1}{x^{2}+5 x+6}$
$2 x-2$	$\frac{x-1}{x+2}$

Divide. Assume all expressions are defined.
9. $\frac{5 x^{6}}{x^{2} y} \div \frac{10 x^{2}}{y}$

10. $\frac{x^{2}-2 x-8}{x^{2}-2 x-15}$
$\frac{2 x^{2}-8 x}{2 x^{2}-10 x}$ $\frac{x+2}{x+3}$

Solve. Check your solution
12. $\frac{2 x^{2}+8 x-10}{2 x^{2}+14 x+20}=4$
11. $\frac{x^{2}+x-12}{x-3}=15$
$x=-3$

Solve

13. The distance, d, traveled by a car undergoing constant acceleration, a, for a time, t, is given by $d=v_{0} t+\frac{1}{2} a t^{2}$, where v_{0} is the initial velocity of the car Two cars are side by side with the same initial velocity. One car accelerates, $a=A$, and the other car does not accelerate, $a=0$. Write an expression for the ratio of the distance traveled by the accelerating car to the distance traveled by the nonaccelerating car as a function of time.

$$
1+\frac{A t}{2 v_{0}}
$$

12
Holt Algebra 2

Review for Mastery

8-2 Multiplying and Dividing Rational Expressions

Examples of rational expressions: $\frac{3}{x}, \frac{x+1}{x+2}$, and $\frac{x+3}{2 x^{2}}$

When simplifying a rational expression:

- Factor the numerator and the denominator completely.
- Divide out any common factors.
- Identify any x-values for which the expression is undefined.

Simplify: $\frac{24 x^{6}}{8 x^{2}}$

$x \neq 0$, because $8 x^{2}$ is undefined at $x=0$.

Simplify: $\frac{x^{2}-2 x-8}{x^{2}+x-2}$
First, factor the numerator and the denominator.

Simplify.

1. $\frac{x^{2}-2 x-3}{x^{2}+6 x+5}$
$x^{2}+6 x+5$
$(x+1)(x-3)$
$\frac{(x+1)(x-3)}{(x+1)(x+5)}$

$$
\frac{x-3}{x+5}
$$

3. $\frac{x^{2}-4 x}{x^{2}-5 x+4}$

$$
x \neq \quad-1,-5
$$

$$
,-5
$$

$\frac{\frac{x^{2}-5 x+4}{(x-4)(x-1)}}{\frac{x}{x-1}}$
opright © by Holt. Rinehart and Winston.
righis resenved.
14

