EXPLORATION

7-1 Exponential Functions, Growth, and Decay

A biologist is studying a type of cell that divides in two every hour. The biologist begins the experiment with a single cell. The population doubles every hour.

1. Complete the table.

Time (h)	0	1	2	3	4	5
Cells	1					

- 2. How many hours will it take until there are more than 500 cells?
- **3.** How many cells will there be after 10 hours?
- 4. How many cells will there be after *n* hours?

THINK AND DISCUSS

- 5. Explain how you can write a function that models this situation.
- 6. **Describe** how your function would be different if the biologist started the experiment with 3 cells

EXPLORATION

7-1 Exponential Functions, Growth, and Decay

A biologist is studying a type of cell that divides in two every hour. The biologist begins the experiment with a single cell. The population doubles every hour.

1. Complete the table.

Time (h)	0	1	2	3	4	5
Cells	1	2	4	8	16	32

- 2. How many hours will it take until there are more than 500 cells? 9
- **3.** How many cells will there be after 10 hours? **1024**
- 4. How many cells will there be after *n* hours? 2"

THINK AND DISCUSS

- 5. Explain how you can write a function that models this situation.
- 6. **Describe** how your function would be different if the biologist started the experiment with 3 cells
- 5. There are 2 times as many cells each hour as the previous hour and 1 cell initially, so $f(x) = 2^x$ models the situation.
- 6. $f(x) = 3(2^x)$ would model the situation.