\qquad Date \qquad Class \qquad

LEsson Practice B

6-7 Investigating Graphs of Polynomial Functions

Identify the leading coefficient, degree, and end behavior.

1. $P(x)=2 x^{5}-6 x^{3}+x^{2}-2$
2. $Q(x)=-4 x^{2}+x-1$

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.
3.

4.

5.

Graph the function $P(x)=x^{3}+6 x^{2}+5 x-12$.
6. Identify the possible rational roots.
7. Identify the zeros.
8. Describe the end behavior of the function.
9. Sketch the graph of the function.

Solve.
10. The number, $N(y)$, of subscribers to a local magazine can be modeled by the function $N(y)=0.1 y^{4}-3 y^{3}+10 y^{2}-30 y+10,000$, where y is the number of years since the magazine was founded. Graph the polynomial on a graphing calculator and find the minimum number of subscribers and the year in which this occurs.

Practice A
6-7 Investigating Graphs of Polynomial Functions
Complete the table to identify the leading coefficient, degree, and end behavior of each polynomial function.

	Polynomial	Leading Coefficient	Degree	End Behavior
1.	$P(x)=x^{2}+3 x+6$	1	2	As $x \rightarrow-\infty, P(x) \rightarrow+\infty$ As $x \rightarrow+\infty, P(x) \rightarrow+\infty$
2.	$P(x)=-3 x^{3}+2 x-5$	-3	3	As $x \rightarrow-\infty, P(x) \rightarrow+\infty$ As $x \rightarrow+\infty, P(x) \rightarrow-\infty$
3.	$P(x)=2 x^{4}+2 x^{3}+3$	2	4	As $x \rightarrow-\infty, P(x) \rightarrow+\infty$ As $x \rightarrow+\infty, P(x) \rightarrow+\infty$
4.	$P(x)=-6 x^{5}+3 x^{3}+1$	-6	5	As $x \rightarrow-\infty, P(x) \rightarrow+\infty$ As $x \rightarrow+\infty, P(x) \rightarrow-\infty$

Graph the function $P(x)=x^{3}+4 x^{2}-x-4$.
5. Identify possible rational roots.
$\pm 1, \pm 2, \pm 4$
6. Test the roots using synthetic division to find a zero.

$$
(x-1)\left(x^{2}+5 x+4\right)
$$

7. Use your results from the synthetic division
 to factor the polynomial to find all zeros.

$$
(x-1)(x+4)(x+1)
$$

8. Find other points to use to draw the graph, such as the y-intercept and points between the zeros such as $P(-2)$ and $P(-3)$

$$
y \text {-intercept }=-4 ; P(-2)=6 ; P(-3)=8
$$

9. Identify the end behavior of the graph.

$$
\text { As } x \rightarrow-\infty, P(x) \rightarrow-\infty, \text { as } x \rightarrow+\infty, P(x) \rightarrow+\infty
$$

10. Sketch the graph of the function.

	Holt Algebra 2
LESSON Practice C	
6-7 Investigating Graphs of Polynomial Functions	
Identify the leading coefficient, degree, and end be 1. $\begin{aligned} R(x)= & -6 x^{4}+4 x^{3}-x^{2}+1 \\ & -6 ; 4 ; \text { as } x \rightarrow-\infty, R(x) \rightarrow-\infty: \text { a } \end{aligned}$	havior. d as $x \rightarrow+\infty, \boldsymbol{R}(\boldsymbol{X}) \rightarrow-\infty$
2.$\begin{aligned} Q(x) & =12+8 x-16 x^{3}-x^{2} \\ & -16 ; 3 ; \text { as } x \rightarrow-\infty, Q(x) \rightarrow+\infty \text { : and as } x \rightarrow+\infty, Q(x) \rightarrow-\infty \end{aligned}$	
Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.	
3. 4. Odd; negative	5.
Graph the function.	
6. $P(x)=x^{3}+2 x^{2}-4 x-8$	
Graph each function on a calculator, and estimate the local maxima and minima.	
7. $P(x)=-x^{4}+4 x^{3}-2 x^{2}-x+5$ Minima: 4.5; maxima: 5.1 and 13.5	
8. $P(x)=x^{5}-x^{4}-5 x^{2}$ Minima: -8.68; maxima: 0	$r_{-6}^{8} \cdot{ }_{-10}$
Solve.	
9. An engineer needs a metal box to shield sensitive electronic devices from external electric fields. One side of the box should be open so that it can be placed over the components. The box can be made from a 3 m by 4 m sheet of metal by cutting squares from the corners and folding up the sides.	
b. What dimensions of the box result in the maximum volume?	1.9 m by 2.9 m by 0.55 m
	Holt Algebra 2

Practice B

6.7 Investigating Graphs of Polynomial Functions

Identify the leading coefficient, degree, and end behavior

1. $P(x)=2 x^{5}-6 x^{3}+x^{2}-2$

2; 5; as $x \rightarrow+\infty, P(x) \rightarrow+\infty$; and as $x \rightarrow-\infty, P(x) \rightarrow-\infty$
2. $Q(x)=-4 x^{2}+x-1$

$$
-4 ; 2 ; \text { as } x \rightarrow-\infty, Q(x) \rightarrow-\infty ; \text { and as } x \rightarrow+\infty, Q(x) \rightarrow-\infty
$$

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.
3.

Even; negative

Even; positive
5.

Graph the function $P(x)=x^{3}+6 x^{2}+5 x-12$.
6. Identify the possible rational roots.
$\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$
7. Identify the zeros.

$$
-4,-3, \text { and } 1
$$

8. Describe the end behavior of the function.

$$
\text { As } x \rightarrow+\infty, P(x) \rightarrow+\infty, \text { and }
$$

$$
\text { as } x \rightarrow-\infty, P(x) \rightarrow-\infty
$$

9. Sketch the graph of the function.

Solve.
10. The number, $N(y)$, of subscribers to a local magazine can be modeled by the function $N(y)=0.1 y^{4}-3 y^{3}+10 y^{2}-30 y+10,000$, where y is the number of years since the magazine was founded. Graph the polynomial on a graphing calculator and find the minimum number of subscribers and the year in which this occurs. About 5400 in year 20

Review for Mastery

6-7 Investigating Graphs of Polynomial Functions

Examine the sign and the exponent of the leading term (term of greatest degree) of a polynomial $P(x)$ to determine the end behavior of the function.
Even degree functions: Exponent of
Positive leading coefficient

Example: $P(x)=3 x^{4}+2 x^{3}-5 \quad$ Leading term: $3 x^{4}$ End behavior: As $x \rightarrow-\infty, P(x) \rightarrow+\infty$, As $x \rightarrow+\infty, P(x) \rightarrow+\infty$.

Odd degree functions: Exponent of leading term is odd.

As $x \rightarrow+\infty, P(x) \rightarrow+\infty$.
As $x \rightarrow-\infty, P(x) \rightarrow-\infty$.

Negative leading coefficient Negative leading coeffic
As $x \rightarrow-\infty, P(x) \rightarrow+\infty$. As $x \rightarrow+\infty, P(x) \rightarrow-\infty$.

Example: $P(x)=-2 x^{5}-6 x^{2}+x$ Leading term: $-2 x^{5}$

Identify the end behavior of each function.

1. $P(x)=4 x^{3}+8 x^{2}-5$

Leading term: $4 x^{3}$
Sign and degree: Positive, 3, odd
End behavior: as $x \rightarrow-\infty, P(X) \rightarrow-\infty$
as $\boldsymbol{x} \rightarrow+\infty, \boldsymbol{P}(\boldsymbol{X}) \rightarrow+\infty$
2. $P(x)=-9 x^{6}+2 x^{3}-x+7$

Leading term: $\quad-9 x^{6}$
Sign and degree: negative, 6 , even
End behavior: as $x \rightarrow-\infty, P(x) \rightarrow-\infty$
as $\boldsymbol{X} \rightarrow+\infty, \boldsymbol{P}(\boldsymbol{X}) \rightarrow-\infty$

54

