Practice B

6-6 Fundamental Theorem of Algebra

Write the simplest polynomial function with the given roots.

2.
$$\frac{1}{2}$$
, 5, and -2

3.
$$2i$$
, $\sqrt{3}$, and 4

4.
$$\sqrt{2}$$
, -5, and -3*i*

Solve each equation by finding all roots.

5.
$$x^4 - 2x^3 - 14x^2 - 2x - 15 = 0$$
 6. $x^4 - 16 = 0$

6.
$$x^4 - 16 = 0$$

7.
$$x^4 + 4x^3 + 4x^2 + 64x - 192 = 0$$
 8. $x^3 + 3x^2 + 9x + 27 = 0$

8.
$$x^3 + 3x^2 + 9x + 27 = 0$$

Solve.

9. An electrical circuit is designed such that its output voltage, V, measured in volts, can be either positive or negative. The voltage of the circuit passes through zero at t = 1, 2, and 7 seconds. Write the simplest polynomial describing the voltage V(t).

Practice A

6-6 Fundamental Theorem of Algebra

Identify the number of zeros for each function.

1. $P(x) = x^3 + 2x^2 - 12x + 1$ **2.** $P(x) = 2x^5 - 5x + 10$ **3.** $P(x) = 3x^4 + 2x$

____ 5 ____ 4

Write the simplest polynomial function with the given zeros.

4. -1. 0. and 2

a. Write the factored expression.b. Multiply the first two factors.

d. Combine like terms.

$$P(x) = x(x+1)(x-2)$$

$$P(x) = (x^2 + x)(x-2)$$

c. Multiply the result by the remaining factor.

d. Combine like terms.

$$P(x) = x^3 - 2x^2 + x^2 - 2x$$

$$P(x) = x^3 - x^2 - 2x$$

5. −3, 1, and 5

$$P(x) = x^3 - 3x^2 - 13x + 15$$

$$P(x) = x^3 + 4x^2 - x - 4$$

7. 2i

a. How many zeros does this function have?

b. Write the conjugate pair for the complex root.

c. Write the factored expression.

d. Multiply the binomials.

$$P(x) = \frac{2i, -2i}{P(x) = (x+2i)(x-2i)}$$

d. Multiply the binomials.

8.
$$-2$$
 and $\sqrt{3}$

2. -5i, 2, and 7

4. 2*i*, 4, and $\sqrt{6}$

$$P(x) = x^3 + 2x^2 - 3x - 6$$

Practice C
6-6 Fundamental Theorem of Algebra Write the simplest polynomial function with the given roots.

 $P(x) = x^4 + 4x^3 + 4x^2 + 4x + 3$

$$P(x) = x^3 + 2x^2 - 3x - 6$$
 $P(x) = x^3 - 7x^2 + 17x - 15$

Solve the equation by finding all roots.

10. $x^3 - 6x^2 - 2x + 12 = 0$

$$x = 6, \pm \sqrt{2}$$

Copyright © by Holt, Rinehart and Winston. All rights reserved.

1. $-\frac{3}{4}$, 6, and -1

43

Holt Algebra 2

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Review for Mastery 6-6 Fundamental Theorem of Algebra

Practice B
6-6 Fundamental Theorem of Algebra

 $P(x) = x^3 - 2x^2 - 11x + 12$

 $P(x) = x^5 - 4x^4 + x^3 - 4x^2$

-12x + 48

3. 2*i*. $\sqrt{3}$. and 4

Solve each equation by finding all roots.

7. $x^4 + 4x^3 + 4x^2 + 64x - 192 = 0$

5. $x^4 - 2x^3 - 14x^2 - 2x - 15 = 0$

1. 1. 4. and -3

Write the simplest polynomial function with the given roots.

2. $\frac{1}{2}$, 5, and -2

6. $x^4 - 16 = 0$

8. $x^3 + 3x^2 + 9x + 27 = 0$

x = i, -i, -3, and 5 x = 2, -2, 2i, and -2i

x = -4i, 4i, 2, and -6 x = -3i, 3i, and -3

 $V(t) = t^3 - 10t^2 + 23t - 14$

9. An electrical circuit is designed such that its output voltage, \it{V} , measured in

volts, can be either positive or negative. The voltage of the circuit passes through zero at t=1, 2, and 7 seconds. Write the simplest polynomial describing the voltage V(t).

 $P(x) = x^3 - \frac{7}{2}x^2 - \frac{17}{2}x + 5$

 $P(x) = x^5 + 5x^4 + 7x^3 + 35x^2 - 18x - 90$

If r is a root of a polynomial function, then (x - r) is a factor of the polynomial, P(x). So, you can use the roots to write the simplest form of a polynomial function.

Write the simplest polynomial function with roots -4, -2, and 3. Step 1 Write the factors of the polynomial, P(x) = 0. Root (a) -4 -2 3

 $P(x) = x^4 - 9x^3 + 39x^2 - 225x + 350$

(x + 4)(x + 2)(x - 3) = 0(x+4)(x+2)(x-3) = 0 **Factor** (x-a) **Step 2** Multiply the first two factors, (x+4)(x+2).

1. -5. 1. and 2

3. 1, 4, and 5

5. 2.4 and 6

 $(x^2 + 6x + 8)(x - 3) = 0$

Step 3 Multiply $(x^2 + 6x + 8)(x - 3)$. Then simplify. $x^3 - 3x^2 + 6x^2 - 18x + 8x - 24 = 0$ $x^3 + 3x^2 - 10x - 24 = 0$

 $x^3 + 4x^2 - 5x - 2x^2 - 8x + 10$

Write the simplest polynomial function with the given roots.

The function is $P(x) = x^3 + 3x^2 - 10x - 24 = 0$.

(x+5)(x-1)(x-2)=0

 $(x^2 + 4x - 5)(x - 2) = 0$

Solve each equation by finding all roots.

5.
$$4x^4 - 8x^3 - 3x^2 - 18x - 27 =$$

5.
$$4x^4 - 8x^3 - 3x^2 - 18x - 27 = 0$$
 6. $x^4 + 3x^3 - x^2 + 9x - 12 = 0$

$$x = -\frac{3}{2}i, \frac{3}{2}i, 3, \text{ and } -1$$

$$x = i\sqrt{3}, -i\sqrt{3}, 1, \text{ and } -4$$

 $P(x) = x^5 - 4x^4 - 2x^3 + 8x^2 - 24x + 96$

7.
$$x^4 - 3x^3 - 8x^2 + 22x - 24 = 0$$
 8. $x^3 + 6x^2 + 4x + 24 = 0$

$$x = 1 + i$$
, $1 - i$, -3 , and 4

$$x = 2i, -2i, \text{ and } -6$$

9. For a scientific experiment, Tony needs a glass bell jar in the shape of a cylinder with a hemisphere on top. The height of the cylinder must be 3 inches longer than its radius and the volume must be 72π cubic inches. What should the radius of the cylinder be?

3 inches

$$\frac{(x^2 - 6x + 8)(x - 6)}{x^3 - 12x^2 + 44x - 48}$$

$x^3 + 4x^2 + 3x$ $x^3 + 2x^2 + 13x + 10$ 4. -2, 3, and 6

x(x+3)(x+1)=0

2. -3. -1. and 0

(x-1)(x-4)(x-5) (x+2)(x-3)(x-6) $(x^2 - 5x + 4)(x - 5)$ $(x^2 - x - 6)(x - 6)$

 $(x^2+3x)(x+1)$

 $x^3 + 3x^2 + x^2 + 3x$

$x^3 - 10x^2 + 29x - 20 x^3 - 7x^2 + 36$

6. -5. 0. and 5

Copyright © by Holt, Rinehart and Winston. All rights reserved.

46

Holt Algebra 2

Holt Algebra 2