\qquad
\qquad
\qquad

Practice B

6-5 Solving Linear Inequalities

Tell whether the ordered pair is a solution of the given inequality.

1. $(1,6) ; y<x+6$
2. $(-3,-12) ; y \geq 2 x-5$
3. $(5,-3) ; y \leq-x+2$

Graph the solutions of each linear inequality.
4. $y \leq x+4$

5. $2 x+y>-2$

7. Clark is having a party at his house. His father has allowed him to spend at most $\$ 20$ on snack food. He'd like to buy chips that cost $\$ 4$ per bag, and pretzels that cost $\$ 2$ per bag.
a. Write an inequality to describe the situation.
b. Graph the solutions.
c. Give two possible combinations of bags of chips and pretzels that Clark can buy.
\qquad
\qquad
Write an inequality to represent each graph.
8.

9.

10.

Practice A

Solving Linear Inequalities

Use substitution to tell whether the ordered pair is a solution of the given inequality.

1. $(3,4) ; y>x+2$
2. $(4,2) ; y \leq 2 x-3$
3. $(2,-1) ; y<-\mathrm{x}$
no
yes
no

Rewrite each linear inequality in slope-intercept form. Then graph the
solutions in the coordinate plane.
4. $y-x \leq 3$

5. $6 x+2 y>-2$
$y \leq x+3$
$y>-3 x-1$

6. Trey is choosing yogurt at the grocery store. The flavors he likes are peach x and blueberry y. His mother said he may choose at most 8 containers of yogurt.
a. Write an inequality to describe the situation

$$
x+y \leq 8
$$

b. Graph the solutions.
c. Give two possible combinations of peach and blueberry yogurt that Trey can choose.
Possible answer: 2 peach, 6 blueberry or 4 peach, 3 blueberry
Write an inequality to represent each graph.
7.
8.

9.

Practice C

Solving Linear Inequalities

Tell whether the ordered pair is a solution of the given inequality.

1. $(-1,-4) ; y \geq 2 x-1$
2. $(-6,2) ; y<-x-4$
3. $(4,-8) ; y \leq \frac{1}{2} x+5$
no - \qquad no yes
Graph the solutions of each linear inequality.

4. $-3 x<y$

5. Adam is ordering helium balloons for his sister's birthday. He has up to $\$ 15$ to spend Decorative balloons cost $\$ 3.00$ each and solid colored balloons cost $\$ 0.50$ each.

$$
\begin{aligned}
& \text { a. Write an inequality to describe the situation. } \\
& x=\text { decorative, } y=\text { solid, } 3 x+0.5 y \leq 15 \\
& \text { b. Graph the solutions. } \\
& \text { c. Give two possible combinations of decorative } \\
& \text { and solid colored balloons Adam can order. } \\
& \text { Possible answer: } 3 \text { decorative, } 12 \text { solid } \\
& \hline \text { or } 2 \text { decorative, } 15 \text { solid }
\end{aligned}
$$

Write an inequality to represent each graph.
8.

$\xrightarrow[\substack{\text { Copright © by Holt, Rinehart and Winston. }}]{y \geq \frac{1}{3} x-4}$
9.

$y<2 x$
\qquad
37

10.

\qquad

Practice B

Solving Linear Inequalities
Tell whether the ordered pair is a solution of the given inequality.

1. $(1,6) ; y<x+6$
2. $(-3,-12) ; y \geq 2 x-5$
3. $(5,-3) ; y \leq-x+2$
yes no yes

Graph the solutions of each linear inequality.
4. $y \leq x+4$
5. $2 x+y>-2$

7. Clark is having a party at his house. His father has allowed him to spend at most $\$ 20$ on snack food. He'd like to buy chips that cost $\$ 4$ per bag, and pretzels that cost $\$ 2$ per bag. a. Write an inequality to describe the situation.

$$
\text { Let } x=\text { chips, } y=\text { pretzels, } 4 x+2 y \leq 20
$$

b. Graph the solutions.
c. Give two possible combinations of bags of chips and pretzels that Clark can buy
Possible answer: 3 chips, 4 pretzels or 4 chips, 1 pretzel

Write an inequality to represent each graph.

Holt Algebra 1

9.

$y \geq \frac{1}{2} x-2$

$$
y<3 x+1
$$

\qquad
36
Copyright byby Holl. Rinehart and Winston.
All

10.

$y \leq-\frac{3}{2} x+4$

Holt Algebra 1

Reteach

6-5 Solving Linear Inequalities

When graphing an equation, the solutions are all the points on the line. When graphing an inequality, the solutions are all the points above or below the line (and may include the line). Graph $y=x+4$.

One method of determining which side to shade is to choose a point anywhere on the graph (except on the line). Then substitute to determine if it makes the inequality true.

The boundary line for the inequality $\boldsymbol{y}>-\boldsymbol{x}+5$ is graphed below. Shade the correct side.

point to check.
The boundary lines for each inequality are graphed below. Shade the correct side

1. $y>5 x+7$
2. $y<-2 x-9$

38

Step 1: Choose a point.
Step 2: Substitute $(0,0)$ in
the inequality $y>-x+5$.
$y>-x+5$
$0 \stackrel{?}{>}-0+5$
$0 \geqslant 5$
The statement is false.
Step 3: Because (0,0),

which is below the line,
resulted in a false statement,
it is not a solution. Shade
above the line.

