\qquad Date \qquad Class \qquad

Lesson Reteach

6-4 Solving Special Systems

When solving equations in one variable, it is possible to have one solution, no solutions, or infinitely many solutions. The same results can occur when graphing systems of equations.

Solve $\left\{\begin{array}{l}4 x+2 y=2 \\ 2 x+y=4\end{array}\right.$.
Multiplying the second equation by -2 will eliminate the x-terms.

$$
\begin{aligned}
4 x+2 y=2 \\
-2(2 x+y=4)
\end{aligned} \rightarrow \begin{aligned}
& 4 x+2 y=2 \\
& \frac{-4 x-2 y}{}=-8 \\
& \hline 0+0=-6 \\
& 0=-6 x
\end{aligned}
$$

The equation is a contradiction. There is no solution.

Solve $\left\{\begin{array}{l}y=4-3 x \\ 3 x+y=4\end{array}\right.$.
Because the first equation is solved for a variable, use substitution.

$$
\begin{aligned}
3 x+y & =4 \\
3 x+(4-3 x) & =4 \quad \text { Substitute } 4-3 x \text { for } y \\
0+4 & =4 \\
4 & =4
\end{aligned}
$$

The equation is true for all values of x and y. There are infinitely many solutions.

Solve each system of linear equations algebraically.

1. $\left\{\begin{array}{l}y=3 x \\ 2 y=6 x\end{array}\right.$
2. $\left\{\begin{array}{l}y=2 x+5 \\ y-2 x=1\end{array}\right.$
3. $\left\{\begin{array}{l}3 x-2 y=9 \\ -6 x+4 y=1\end{array}\right.$
\qquad Date \qquad Class \qquad

LEsson) Reteach

6-4 Solving Special Systems (continued)

A system of linear equations can be classified in three ways.

I. Consistent and independent one solution different slopes	Example: $y=x+3$ $y=-x+6$
II. Consistent and dependent infinitely many solutions same slope, same y-intercepts	Example $y=3 x+4$ $y-3 x=4$
III. Inconsistent no solutions same slope, different y-intercepts	$\left\{\begin{array}{l}\text { Example } \\ y=2 x+5 \\ y=2 x+2\end{array}\right.$

Classify each system below by comparing the slopes and \boldsymbol{y}-intercepts. Then give the number of solutions.
4. $\left\{\begin{array}{l}y=-3 x-2 \\ y=-3 x-4\end{array}\right.$
5. $\left\{\begin{array}{l}y=2 x+5 \\ y=5+2 x\end{array}\right.$
6. $\left\{\begin{array}{l}y=-4 x+3 \\ y=2 x+7\end{array}\right.$
\qquad
\qquad
\qquad
\qquad

Classify each system and give the number of solutions. If there is one solution, provide it.
7. $\left\{\begin{array}{l}y=2 x+8 \\ y-4 x=8\end{array}\right.$
8. $\left\{\begin{array}{l}y+3 x-2=0 \\ 9 x+3 y=6\end{array}\right.$

Practice A

6-4 Solving Special Systems

Solve each system of linear equations. Tell whether the system has
no solution or infinitely many solutions.

1. $\left\{\begin{array}{l}2 x+y=1 \\ 2 x+y=-3\end{array}\right.$
2. $\left\{\begin{array}{l}y=5 x+2 \\ y-5 x=2\end{array}\right.$
\qquad

> infinitely many solutions
3. $\left\{\begin{array}{l}y-3 x+2=0 \\ 2=-y+3 x\end{array}\right.$
4. $\left\{\begin{array}{l}x+y=4 \\ y-4=1-x\end{array}\right.$
infinitely many solutions \qquad
no solution

Give the number of solutions to each system. Then classify the system as "consistent, independent", "consistent, dependent", system as "consis
or "inconsistent".
5. $\left\{\begin{array}{l}y=2(x+1) \\ y-2 x=2\end{array}\right.$
6. $\left\{\begin{array}{l}y-4 x+5=0 \\ 4 x=y-1\end{array}\right.$

infinitely many solutions;
consistent, dependent

no solution;
inconsistent

7. Marquis opens a savings account with $\$ 60$ and adds $\$ 20$ each month. His brother Jibran adds $\$ 20$ each month to the savings account that his grandmother opened with
$\$ 60$. If the brothers continue to make deposits to their savings
accounts at the same rate, when will they have the same
amount of money? Explain.
They will always have the same amount of money
The graphs of these equations are the same line.

	27	Holt Algebra 1

Practice C

6-4. Solving Special Systems
Solve each system of linear equations.

1

Practice B

Solving Special Systems

Solve each system of linear equations.

1. $\left\{\begin{array}{l}y=2 x-3 \\ y-2 x=-3\end{array}\right.$
2. $\left\{\begin{array}{l}3 x+y=4 \\ -3 x=y-7\end{array}\right.$
3. | $\frac{\text { infinitely many solutions }}{y=-4 x+1}$ |
| :---: | :---: |
| $4 x=-y-6$ |\quad 4. \(\left\{\begin{array}{l}y-x+3=0

x=y+3\end{array}\right]\) no solution

Classify each system. Give the number of solutions.

5. $\left\{\begin{array}{l}y=3(x-1) \\ -y+3 x=3\end{array}\right.$	6. $\left\{\begin{array}{l}y-2 x=5 \\ x=y-3\end{array}\right.$
consistent, dependent;	consistent, independent;
infinitely many solutions	one solution
7. Sabina and Lou are reading the same book. Sabina reads 12 pages a day. She had read 36 pages when Lou started the book, and Lou reads at a pace of 15 pages per day. If their reading rates continue, will Sabina and Lou ever be reading the same page on the same day? Explain.	8. Brandon started jogging at 4 miles per hour. After he jogged 1 mile, his friend Anton started jogging along the same path at a pace of 4 miles per hour. If they continue to jog at the same rate, will Anton ever catch up with Brandon? Explain.
Yes. The graphs of the two	No. The graphs of the two
equations have different	equations are parallel
slopes. They will	lines. They will never
intersect.	intersect.

Holt Algebra 1

Reteach

Solving Special Systems

When solving equations in one variable, it is possible to have one solution, no solutions, or infinitely many solutions. The same results can occur when graphing systems of equations.

Solve $\left\{\begin{array}{l}4 x+2 y=2 \\ 2 x+y=4\end{array}\right.$.
Multiplying the second equation by -2 will
eliminate the x-terms.

$$
\begin{aligned}
4 x+2 y=2 \\
-2(2 x+y=4)
\end{aligned} \rightarrow \begin{aligned}
4 x+2 y & =2 \\
-4 x-2 y & =-8 \\
\hline 0+0 & =-6 \\
0 & =-6 x
\end{aligned}
$$

The equation is a contradiction. There is no solution.

$$
\text { Solve }\left\{\begin{array}{l}
y=4-3 x \\
3 x+y=4
\end{array}\right. \text {. }
$$

Because the first equation is solved for a variable, use substitution.

$$
\begin{aligned}
& 3 x+y=4 \\
& 3 x+(4-3 x)=4 \quad \text { Substitute } 4-3 x \text { for } y \\
& 0+4=4 \\
& 4=4 \checkmark \\
& \text { The equation is true for all values of } x \text { and } y .
\end{aligned}
$$ There are infinitely many solutions.

Solve each system of linear equations algebraically.

