\qquad Date \qquad Class \qquad

LESSON Reteach

6-3 Solving Systems by Elimination

Elimination can be used to solve a system of equations by adding terms vertically. This will cause one of the variables to be eliminated. It may be necessary to multiply one or both equations by some number to use this method.
I. Elimination may require no change to either equation.
$\left\{\begin{array}{l}3 x+y=6 \\ 5 x-y=10\end{array}\right.$

$$
\begin{aligned}
& 3 x+y=6 \\
& 5 x-y=10 \\
& \hline 8 x+0=16
\end{aligned}
$$

II. Elimination may require multiplying one equation by an appropriate number.
$\left\{\begin{array}{l}2 x+5 y=9 \\ x-3 y=10\end{array}\right.$

III. Elimination may require multiplying both equations by different numbers.
$\left\{\begin{array}{l}5 x+3 y=2 \\ 4 x+2 y=10\end{array}\right.$

Solve each system by elimination.

1. $\left\{\begin{array}{l}2 x-y=20 \\ 3 x+2 y=-19\end{array}\right.$
2. $\left\{\begin{array}{l}3 x+2 y=10 \\ 3 x-2 y=14\end{array}\right.$
3. $\left\{\begin{array}{l}x+y=12 \\ 2 x+y=6\end{array}\right.$
4. $\left\{\begin{array}{l}3 x-y=2 \\ -8 x+2 y=4\end{array}\right.$
\qquad Date \qquad Class \qquad

LEsson: Reteach

6-3. Solving Systems by Elimination (continued)

A system of equations can be solved by graphing, substitution, or elimination.

- Use graphing if both equations are solved for y, or if you want an estimate of the solution.
- Use substitution if either equation is solved for a variable, or has a variable with a coefficient of 1 or -1 .
- Use elimination if both equations have the same variable with the same or opposite coefficients.

It may be necessary to manipulate your equations to get them in any of the three forms above.

Solve $\begin{cases}\boldsymbol{y}=\mathbf{3}-\boldsymbol{x} \\ \mathbf{2 x}-\boldsymbol{y}=6\end{cases}$	One equation is solved for a variable. Use substitution.
$3-x$	

$2 x-(3-x)=6$

$$
3 x-3=6
$$

$$
\frac{+3}{3 x}=\frac{+3}{9}
$$

$$
x=3
$$

Solve $\left\{\begin{array}{l}-2 x-y=-5 \\
3 x+y=-1\end{array}\right.$

$-2 x-y=-5$
$3 x+y=-1$
$x+0=-6$
$x=-6$

The equations have
the same variable
with opposite
coefficients. Use
elimination.

Substitute $x=-6$ into one of the original equations to find the value of y.

$$
\begin{aligned}
& 3 x+y=-1 \\
& 3(-6)+y=-1 \\
&-18+y=-1 \\
&+18 \\
& y=\frac{+18}{17}
\end{aligned}
$$

The solution is $(-6,17)$.

Solve each system by any method.

5. $\left\{\begin{array}{l}y=x+3 \\ -2 x+y=-4\end{array}\right.$
6. $\left\{\begin{array}{l}4 x+y=10 \\ -2 x-y=4\end{array}\right.$
7. $\left\{\begin{array}{l}2 x+y=8 \\ 3 x+5 y=5\end{array}\right.$

Practice A

6-3 Solving Systems by Elimination
Fill in the blanks to solve each system by elimination.

1. $\left\{\begin{array}{l}x+3 y=14 \\ 2 x-3 y=-8\end{array}\right.$ Add the equations:
$x+3 y=14$

$+2 x-3 y=28$
$3 x+\frac{0 y}{3 y}=6$

$\begin{aligned} 3 x+\frac{3 x}{3 x} & =6 \\ \div 3 & \div 3\end{aligned}$
$x=2$
Substitute 2 for x in
one of the
$2^{x+3 y=14}$
$2+3 y=14$
$\frac{2}{3 y}=-\frac{2}{12}$
$\div 3 \div$

$$
\text { Solution: }\left(\begin{array}{l}
\left.y=\frac{4}{2}, \underline{4}\right)
\end{array}\right.
$$

2. $\left\{\begin{array}{l}2 x+2 y=4 \\ 3 x+2 y=7\end{array}\right.$
Subtract the equations:
$2 x+2 y=4$
3. $\left\{\begin{array}{l}3 x+4 y=26 \\ x-2 y=-8\end{array}\right.$

$$
\begin{aligned}
& x-2 y=-8 \\
& \text { Multiply the second } \\
& \text { equation by 2. Then, } \\
& \text { add the equations: }
\end{aligned}
$$

add the equations:
or

$$
\left\{\begin{array}{l}
3 x+4 y=26 \\
2(x-2 y=-8)
\end{array}\right.
$$

$\begin{aligned} 2 x+2 y & =4 \\ -3 x-\underline{2} & =\underline{-7} \\ -x+\underline{0 y} & =\underline{-3}\end{aligned}$

$$
\left\{\begin{array}{l}
3 x+4 y=26 \\
2(x-2 y=-8)
\end{array}\right.
$$

$$
3 x+4 y=26
$$

$$
\begin{array}{r}
+2 x-4 y=\underline{-16} \\
\hline 5 x+0=\frac{10}{10}
\end{array}
$$

$-x=-3$
$\div \frac{-1}{x} \div \frac{\overline{-1}}{3}$
Substitute 3 for x in one of the equations:
$3 x+2 y=7$
$3(3)+2 y=7$
$\frac{9}{9}+2 y=7$
$-\quad 9$
$\quad-\frac{9}{-2}$
$2 y=\frac{-2}{-1}$

$$
\begin{array}{r}
5 x+0=\frac{10}{10} \\
\frac{5}{5} x=\frac{10}{5}
\end{array}
$$

$$
\begin{aligned}
\frac{5}{5} x & =\frac{10}{5} \\
x & =\frac{2}{2}
\end{aligned}
$$

$$
\text { Substitute } 2 \text { for } x \text { in }
$$

one of the equations:

$$
\begin{aligned}
x-2 y & =-8 \\
2-2 y & =-8
\end{aligned}
$$

Solu

$$
1(3, \underline{y=1})
$$

Practice B

Solving Systems by Elimination

Follow the steps to solve each system by elimination.

1. $\left\{\begin{array}{l}2 x-3 y=14 \\ 2 x+y=-10\end{array}\right.$
Subtract the second equation:
2. $\left\{\begin{array}{l}3 x+y=17 \\ 4 x+2 y=20\end{array}\right\} \begin{aligned} & \text { Multiply the first equation by } \\ & \text { add the equations: } \\ & \frac{-6 x-\frac{2}{+4 x} y=\frac{-34}{20}}{-2 x=-14}\end{aligned}$

$2 x-3 y=14$ $\frac{-(2 x+y=-10)}{-4 y=24}$
Solve the resulting equation:
$y=\frac{-6}{}$Use your answer to find the value of $x:$ $x=\frac{-2}{}=$ Solution: $\left(\frac{-2}{-6}\right)$

$$
\begin{aligned}
& \text { Solve the resulting equation: } \\
& x=\frac{7}{\text { Use your answer to find the value of } y \text { : }}
\end{aligned}
$$

Solve each system by elimination. Check your answer.
Solve each system by elimination. Check your answer.

3. $\begin{cases}x+3 y=-7 \\ -x+2 y=-8\end{cases}$	4. $\left\{\begin{array}{l}3 x+y=-26 \\ 2 x-y=-19\end{array}\right.$	5. $\left\{\begin{array}{l}x+3 y=-14 \\ 2 x-4 y=32\end{array}\right.$
$\frac{(2,-3)}{}$ $\frac{(-9,1)}{}$ $4 x-y=-5$ $-2 x+3 y=10$ $\left(-\frac{1}{2}, 3\right)$ 7. $\left\{\begin{array}{l}y-3 x=11 \\ 2 y-x=2\end{array}\right.$	8. $\left\{\begin{array}{l}-10 x+y=0 \\ 5 x+3 y=-7\end{array}\right.$	
$(-4,-1)$		

Solve each system by elimination.
4. $\left\{\begin{array}{l}3 x-2 y=1 \\ 2 x+2 y=14\end{array}\right.$
5. $\left\{\begin{array}{l}x+y=4 \\ 3 x+y=16\end{array}\right.$
$(6,-2)$

$$
\text { 6. }\left\{\begin{array}{l}
3 x+2 y=-26 \\
2 x-6 y=-10
\end{array}\right] \begin{gathered}
(-8,-1) \\
\hline
\end{gathered}
$$

$(3,4)$
7. The sum of two numbers is -1 . When twice the first number and four times the second number are added, the sum is -10 . \qquad

3 and -4
\longrightarrow
\square

Practice C

6-3 Solving Systems by Elimination

Solve each system by elimination.

1. $\begin{aligned} & \left\{\begin{array}{l}x+y=2 \\ 2 x-y=7\end{array}\right. \\ & \text { 4. }\left\{\begin{array}{l}-3 x-4 y=-2 \\ 6 x+4 y=3\end{array}\right. \\ & \text { 7. } \begin{array}{l}\frac{(3,-1)}{x+6 y=1} \\ 2 x-3 y=32\end{array} \\ & \text { 10. } \begin{array}{l}\left.\frac{(1,1}{3}\right) \\ \frac{(13,-2)}{5 x-2 y=-48} \\ 2 x+3 y=-23\end{array} \\ & \frac{(-10,-1)}{}\end{aligned}$
2. $\left\{\begin{array}{l}3 x-2 y=-2 \\ 3 x+y=10\end{array}\right.$
$(2,4)$
3. $\left\{\begin{array}{l}2 x-2 y=14 \\ x+4 y=-13\end{array}\right.$
4.

$(3,-4)$

$-\frac{1}{2} x+y=4$
$\frac{1}{3} x-y=-3$
$(-6,1)$

11. $\left\{\begin{array}{l}4 x-3 y=-9 \\ 5 x-y=8\end{array}\right.$
12. $\left\{\begin{array}{l}x+y=-7 \\ x-y=5\end{array}\right.$

-

$(-1,-6)$
6. $\left\{\begin{array}{l}y-x=17 \\ 2 y+3 x=-11\end{array}\right.$
9. $\frac{(-9,8)}{3 x+y=-15} \begin{aligned} & 2 x-3 y=23\end{aligned}$
9. $\left\{\begin{array}{l}3 x+y=-15 \\ 2 x-3 y=23\end{array}\right.$
12. $\left\{\begin{array}{c}\frac{(-2,-9)}{3 x-3 y=-1} \\ 12 x-2 y=16 \\ \left(\frac{5}{3}, 2\right)\end{array}\right.$
13. At a bakery, Riley bought 3 bagels and 2 muffins for $\$ 7.25$.

Karen bought 5 bagels and 4 muffins for $\$ 13.25$. What is
the cost of each item?
bagel: \$1.25; muffin: \$1.75
14. A chemist has a beaker of a 3% acid solution and a beaker of
a 7% acid solution. He needs to make 75 mL of a 4% acid solution.
a. Complete the table.

	3% solution	+	7% solution	$=$	4% solution
Amount of Solution (mL)	x	+	y	$=$	75
Amount of Acid (mL)	$\underline{0.03} x$	+	$\underline{0.07} y$	$=$	$0.04(75)$

b. Use the information in the table to write a system of

linear equations. \begin{tabular}{l}
$x+y=75$

$0.03 x+0.07 y=3$

$~$

c. Solve the system of equations to find how much he

will use from each beaker.

$\quad 56.25 \mathrm{~mL}$ of the 3% solution; 18.75 mL of the 7% solution
\end{tabular}

Solve.

9. Brianna's family spent $\$ 134$ on 2 adult tickets and 3 youth tickets at an amusement park. Max's family spent $\$ 146$ on 3 adult tickets and 2 youth tickets. What is the price of a youth ticket? \qquad
10. Carl bought 19 apples of 2 different varieties to make a pie

The total cost of the apples was $\$ 5.10$. Granny Smith apples cost $\$ 0.25$ each and Gala apples cost $\$ 0.30$ each. How many 7 Gala apples; 12 of each type of apple did Carl buy?
$\frac{\text { Granny Smith apples }}{}$

Reteach

Solving Systems by Elimination

Elimination can be used to solve a system of equations by adding terms vertically. This will cause one of the variables to be eliminated. It may be necessary to multiply one or both equations by some number to use this method.
I. Elimination may require no change to either equation.
$\left\{\begin{array}{l}3 x+y=6 \\ 5 x-y=10\end{array}\right.$

$$
\begin{aligned}
& 3 x+y=6 \\
& 5 x-y=10 \\
& \hline 8 x+0=16
\end{aligned}
$$

II. Elimination may require multiplying one equation by an appropriate number
$\left\{\begin{array}{l}2 x+5 y=9 \\ x-3 y=10\end{array} \quad \begin{array}{l}\text { Multiply bottom } \\ \text { equation by }-2 .\end{array}>\begin{array}{c}2 x+5 y=9 \\ -2(x-3 y)=-2(10) \\ \frac{-2 x+6 y=-20}{0+11 y=-11}\end{array}\right.$
III. Elimination may require multiplying both equations by different numbers.
$\{5 x+3 y=2$
$\left\{\begin{array}{l}5 x+2 y=10\end{array}\right.$

$$
\begin{aligned}
& \text { Multiply the top by }-2 \\
& \text { and the bottom by } 3 \text {. }
\end{aligned}
$$

$$
\begin{gathered}
-2(5 x+3 y=2) \quad \begin{array}{c}
-10 x+-6 y=-4 \\
3(4 x+2 y=10)
\end{array} \quad \begin{aligned}
& 12 x+6 y=30 \\
& \hline 2 x+0=26
\end{aligned} \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
&-2(5 x+3 y=2) \\
& 3(4 x+2 y=10) \\
& \hline
\end{aligned}
$$

Solve each system by elimination.

1. $\left\{\begin{array}{l}2 x-y=20 \\ 3 x+2 y=-19\end{array}\right.$	2. $\left\{\begin{array}{l}3 x+2 y=10 \\ 3 x-2 y=14\end{array}\right.$		
$(3,-14)$		(4, -1)	
3. $\left\{\begin{array}{l}x+y=12 \\ 2 x+y=6\end{array}\right.$	4. $\left\{\begin{array}{l}3 x-y=2 \\ -8 x+2 y=4\end{array}\right.$		
$(-6,18)$		$(-4,-14)$	
	22		Holt Algebra 1

Reteach

6-3 Solving Systems by Elimination (continued)
A system of equations can be solved by graphing, substitution, or elimination.

- Use graphing if both equations are solved for y, or if you want an estimate of the solution.
- Use substitution if either equation is solved for a variable, or has a variable with a coefficient of 1 or -1
- Use elimination if both equations have the same variable with the same or opposite coefficients.

It may be necessary to manipulate your equations to get them in any of the three forms above.

Solve each system by any method

Problem Solving

Solving Systems by Elimination

Write the correct answer

1. Mr. Nguyen bought a package of 3 chicken legs and a package of 7 chicken wings. Ms. Dawes bought a package of 3 chicken legs and a package of 6 of 3 chicken legs and a package of 6
chicks. Mr. Nguyen bought 45 ounces of chicken. Ms. Dawes bought 42 ounces of chicken. How much did each chicken leg and each chicken wing weigh?
chicken leg 8 oz.,
chicken wing $30 z$.
2. The Lees spent $\$ 31$ on movie tickets for 2 adults and 3 children. The Macias spent $\$ 26$ on movie tickets for 2 adults spen 2 childron. What are the prices for e the prices fo adult and child movie tickets?

$$
\begin{gathered}
\text { adult ticket \$8, } \\
\hline \text { child ticket } \$ 5 \\
\hline
\end{gathered}
$$

2. Jayce bought 2 bath towels and returned 3 hand towels. His sister Jayna bought 3 bath towels and 3 hand towels. Jayce's bill was $\$ 5$. Jayna's bill was $\$ 45$. What are the prices of a bath towel and a hand towel?
\qquad hand towel \$5
3. Last month Stephanie spent $\$ 57$ on 4 allergy shots and 1 office visit. This month she spent $\$ 9$ after 1 office visit and a refund for 2 allergy shots from her insurance company. How much does an office visit cost? an allergy shot?
\qquad allergy shot \$8

Use the chart below to answer questions 5-6. Select the best answer
The chart shows the price per pound for dried fruit

Dried Fruit Price List			
Pineapple	Apple	Mango	Papaya
$\$ 7.50 / \mathrm{lb}$	$\$ 7.00 / \mathrm{lb}$	$\$ 8.00 / \mathrm{lb}$	$\$ 7.25 / \mathrm{lb}$

6. A store employee made two gift baskets of dried fruit, each costing $\$ 100$. The first basket had 12 pounds of fruit x and 2 pounds of fruit y . The second basket had 4 pounds of fruit x and 9 pounds of fruit y. Which two fruits did the employee use in the baskets?
F pineapple and apple
G. apple and mango

H mango and papaya
J papaya and pineapple
5. A customer bought 5 pounds of mang and papaya for $\$ 37.75$. How many pounds of each fruit did the customer buy
A) 2 lbs mango and 3 lbs papaya

B 3 lbs mango and 2 lbs papaya
C 1 lb mango and 4 lbs papaya
D 4 lbs mango and 1 lb papaya

Challenge

Solving Systems by Elimination

The elimination method can also be used for a system of three equations in three unknowns
Three camp leaders purchased equipment for a camping trip.
Max bought 10 sleeping bags, 2 tents, and 1 can of bug repellant for $\$ 885$.
Carlos bought 5 sleeping bags, 4 tents, and 1 can of bug repellant for $\$ 865$.
Amy bought 9 sleeping bags, 6 tents, and 6 cans of bug repellant for $\$ 1410$. If they made their purchases at the same store, how much did each item cost?

1. Write the 3 equations: $\left\{\begin{array}{l}10 x+2 y+z=885 \\ \frac{5 x+4 y+z=865}{9 x+6 y+6 z=1410}\end{array}\right.$
2. Subtract the second equation from the first \qquad
3. Multiply the second equation by -6
and add the second and third equations.
$-21 x-18 y=-3780$
4. The equations in steps 2 and 3 form a linear
system in two variables. Solve this system for x. \qquad
5. Substitute the value of x into the first two
equations. Write the resulting system.
$\left\{\begin{array}{l}2 y+z=285 \\ 4 y+z=565\end{array}\right.$
6. Solve the system in problem 5 for y and z.
$y=140, z=5$
sleeping bags: \$60; tents: \$140;
7. Write the cost of each item bug repellant: \$5

LEssom Reading Strategies 6-3. Connecting Concepts

When solving systems of linear equations using elimination, you will sometimes need to multiply one or both equations by a factor in order to get the same coefficients for a variable. This process is very similar to getting a common denominator for fractions. Look at the example below.

1. Describe how you would get common y-coefficients (instead of x-) in the example above. Multiply the first equation by 3 and the second equation
by 5 to get common coefficients of -15 .
2. Show how to get a set of common y-coefficients for the system $\left\{\begin{array}{l}9 x-10 y=7 \\ 5 x+8 y=31\end{array}\right.$

$$
\left\{\begin{array} { l }
{ 4 (9 x - 1 0 y = 7) } \\
{ 5 (5 x + 8 y = 3 1) }
\end{array} \Rightarrow \left\{\begin{array}{l}
36 x-40 y=28 \\
25 x+40 y=155
\end{array}\right.\right.
$$

Solve each system of equations by elimination.
3. $\left\{\begin{array}{l}9 x-2 y=15 \\ 4 x+3 y=-5\end{array}\right.$
4. $\left\{\begin{array}{l}2 x-3 y=50 \\ 7 x+8 y=-10\end{array}\right.$
$(1,-3)$

$$
(10,-10)
$$

Copright. © by Hotl, Rinehart and Winstorn
All
26

