Name	Date	Class
LESSON Practice C		
6-3 <i>Dividing Polynomials</i> Divide by using long division.		
1. $(2x^3 + 14x^2 - 4x - 48) \div (2x + 4)$	2. $(x^3 + 12x^2 - 4x^2)$	$4)\div(x-3)$
3. $(12x^4 + 23x^3 - 9x^2 + 15x + 4) \div (3x - 9x^2)$	(-2 x^3 + 11 x^2	$(-8x-7) \div (2x+1)$

Divide by using synthetic division.

- 5. $(9x^2 3x + 11) \div (x 6)$ 6. $(3x^4 - 2x^2 + 1) \div (x + 2)$
- 8. $(-x^4 7x^3 + 6x^2 1) \div (x 3)$ 7. $(6x^5 - 3x^2 + x - 2) \div (x - 1)$

Use synthetic substitution to evaluate the polynomial for the given value.

- **9.** $P(x) = 4x^3 12x 2$ for x = 5**10.** $P(x) = -3x^4 + 5x^3 x + 7$ for x = -2

Solve.

11. The total weight of the cargo entering a seaport each year can be modeled by the function $C(t) = 0.2t^3 + 1000t^2 + 10t + 50,000$, where *t* is the number of years since the port was opened. The average weight of cargo delivered by each ship is modeled by the function A(t) = 0.1t + 500. Write an expression describing the number of ships entering the port each year.

