\qquad Date \qquad Class \qquad

LESSON
6-3

Practice C

Divide by using long division.

1. $\left(2 x^{3}+14 x^{2}-4 x-48\right) \div(2 x+4)$
2. $\left(x^{3}+12 x^{2}-4\right) \div(x-3)$
3. $\left(12 x^{4}+23 x^{3}-9 x^{2}+15 x+4\right) \div(3 x-1)$ 4. $\left(-2 x^{3}+11 x^{2}-8 x-7\right) \div(2 x+1)$

Divide by using synthetic division.
5. $\left(9 x^{2}-3 x+11\right) \div(x-6)$
6. $\left(3 x^{4}-2 x^{2}+1\right) \div(x+2)$
7. $\left(6 x^{5}-3 x^{2}+x-2\right) \div(x-1)$
8. $\left(-x^{4}-7 x^{3}+6 x^{2}-1\right) \div(x-3)$

Use synthetic substitution to evaluate the polynomial for the given value.
9. $P(x)=4 x^{3}-12 x-2$ for $x=5$
\qquad
10. $P(x)=-3 x^{4}+5 x^{3}-x+7$ for $x=-2$
\qquad

Solve.
11. The total weight of the cargo entering a seaport each year can be modeled by the function $C(t)=0.2 t^{3}+1000 t^{2}+10 t+50,000$, where t is the number of years since the port was opened. The average weight of cargo delivered by each ship is modeled by the function $A(t)=0.1 t+500$. Write an expression describing the number of ships entering the port each year.

Practice A
Dividing Polynomials
Divide by using long division.

1. $x - 3 \longdiv { x ^ { 2 } + 2 x + 6 }$
2. $x + 2 \longdiv { 3 x ^ { 2 } + 3 x - 1 2 }$
$x+5+\frac{21}{x-3}$
$3 x-3-\frac{6}{x+2}$
3. $2 x + 1 \longdiv { 4 x ^ { 3 } + 6 x ^ { 2 } + 3 x }$
4. $5 x ^ { 2 } \longdiv { 1 0 x ^ { 4 } - 2 0 x ^ { 3 } + 2 5 x ^ { 2 } }$

$$
2 x^{2}+2 x+\frac{x}{2 x+1}
$$

$$
2 x^{2}-4 x+5
$$

Complete using synthetic division.
5. $\left(x^{2}+4 x+1\right) \div(x-5)$

a. $A=$ \qquad 1 b. $B=\quad 9$ c. $C=\quad 46$
d. What is the remainder? 46
e. Write the quotient. $x+9+\frac{46}{x-5}$

Divide by using synthetic division.

$$
\begin{aligned}
& \text { 6. }\left(x^{2}-8 x+6\right) \div(x+2) \text { 7. }\left(x^{2}+4 x-2\right) \div(x-3) \\
& x-10+\frac{26}{x+2} x+7+\frac{19}{x-3} \\
& \hline
\end{aligned}
$$

Use synthetic substitution to evaluate the polynomial for the given value.
8. $P(x)=x^{2}-4 x+5$ for $x=4$
9. $P(x)=2 x^{2}+7 x-1$ for $x=-3$
$P(4)=5$
\qquad

19
Holt Algebra 2

Practice C

6-3 Dividing Polynomials

Divide by using long division.

$$
\begin{array}{cc}
\text { 1. } \left.2 x^{3}+14 x^{2}-4 x-48\right) \div(2 x+4) & \text { 2. }\left(x^{3}+12 x^{2}-4\right) \div(x-3) \\
x^{2}+5 x-12 & x^{2}+15 x+45+\frac{131}{x-3} \\
\hline
\end{array}
$$

3. $\left(12 x^{4}+23 x^{3}-9 x^{2}+15 x+4\right) \div(3 x-1)$ 4. $\left(-2 x^{3}+11 x^{2}-8 x-7\right) \div(2 x+1)$

$$
4 x^{3}+9 x^{2}+5+\frac{9}{3 x-1}
$$

$$
-x^{2}+6 x-7
$$

Divide by using synthetic division.

$$
\begin{aligned}
& \text { 5. }\left(9 x^{2}-3 x+11\right) \div(x-6) \\
& \frac{9 x+51+\frac{317}{x-6}}{\left(6 x^{5}-3 x^{2}+x-2\right) \div(x-1)} \\
& 6 x^{4}+6 x^{3}+6 x^{2}+3 x+4 \\
& +\frac{2}{x-1}
\end{aligned}
$$

$$
\text { 6. }\left(3 x^{4}-2 x^{2}+1\right) \div(x+2)
$$

$$
3 x^{3}-6 x^{2}+10 x-20+\frac{41}{x+2}
$$

$$
\text { 8. }\left(-x^{4}-7 x^{3}+6 x^{2}-1\right) \div(x-3)
$$

$$
\begin{gathered}
-x^{3}-10 x^{2}-24 x-72 \\
-\frac{217}{x-3}
\end{gathered}
$$

Use synthetic substitution to evaluate the polynomial for the given value.

$$
\begin{array}{cc}
\text { 9. } P(x)=4 x^{3}-12 x-2 \text { for } x=5 & \text { 10. } P(x)=-3 x^{4}+5 x^{3}-x+7 \text { for } x=-2 \\
P(5)=438 & \\
P(-2)=-79
\end{array}
$$

Solve.
11. The total weight of the cargo entering a seaport each year can be modeled by the function $C(t)=0.2 t^{3}+1000 t^{2}+10 t+50,000$, where t is the number of years since the port was opened. The average weight of cargo delivered by each ship is modeled by the function $A(t)=0.1 t+500$. Write an expression describing the number of ships entering the port each year.

$2 t^{2}+100$		
Copryign by tol, Rinenart and Winston.	21	Holt Algebra 2

Practice B

Dividing Polynomials

Divide by using long division.

1. $\left(x^{2}-x-6\right) \div(x-3)$
2. $\left(2 x^{3}-10 x^{2}+x-5\right) \div(x-5)$
$x+2$
$2 x^{2}+1$
3. $\left(-3 x^{2}+20 x-12\right) \div(x-6)$
4. $\left(3 x^{3}+9 x^{2}-14\right) \div(x+3)$
$-3 x+2$

$$
3 x^{2}-\frac{14}{x+3}
$$

Divide by using synthetic division.
5. $\left(3 x^{2}-8 x+4\right) \div(x-2)$
6. $\left(5 x^{2}-4 x+12\right) \div(x+3)$

$$
\text { 7. } \frac{3 x-2}{\left(9 x^{2}-7 x+3\right) \div(x-1)}
$$

$$
9 x+2+\frac{5}{x-1}
$$

$$
\text { 8. } \frac{5 x-19+\frac{69}{x+3}}{\left(-6 x^{2}+5 x-10\right) \div(x+7)}
$$

$$
-6 x+47-\frac{339}{x+7}
$$

value
value.
9. $P(x)=4 x^{2}-9 x+2$ for $x=3$
10. $P(x)=-3 x^{2}+10 x-4$ for $x=-2$
$P(3)=11$ \qquad

Solve.
11. The total number of dollars donated each year to a small charitable organization has followed the trend $d(t)=2 t^{3}+10 t^{2}+2000 t+10,000$, where d is dollars and t is the number of years since 1990. The total number of donors each year has followed the trend $p(t)=t^{2}+1000$. Write an expression describing the average number of dollars per donor.
\qquad

Review for Mastery

6-3 Dividing Polynomials

In arithmetic long division, you follow these steps: divide, multiply, subtract, and bring down. Follow these same steps to use long division to divide polynomials.
Divide: $\left(6 x^{2}+x+8\right) \div(2 x-1)$.
Step 1 Divide the first term of the dividend, $6 x^{2}$, by the first term of the divisor, $2 x$.

Step 3 Write the quotient including the remainder.

$$
\left(6 x^{2}+x+8\right) \div(2 x-1)=3 x+2+\frac{10}{2 x-1}
$$

Use long division to divide.

1.
2. $x + 2 \longdiv { 4 x ^ { 2 } + 7 x + 6 }$
$\frac{-\left(4 x^{2}+8 x\right)}{x+6}$

$$
4 x-1+\frac{8}{x+2}
$$

$$
2 x+1+\frac{5}{x+4}
$$

3. $x - 5 \longdiv { 3 x ^ { 2 } - 5 x - 5 0 }$
4. $3 x + 2 \longdiv { 6 x ^ { 2 } + 7 x - 6 }$
\qquad

$$
2 x+1-\frac{8}{3 x+2}
$$

