50 - 52, 55 -

Exercises 5.2

Exercises 5.2

In Exercises 1–6, list the transformations needed to transform the graph of $h(x) = 2^x$ into the graph of the given function. (Section 3.4 may be helpful.)

$$f(x) = 2^x - 5$$

2.
$$g(x) = -(2^x)$$

3.
$$k(x) = 3(2^x)$$

4.
$$g(x) = 2^{x-1}$$

$$f(x) = 2^{x+2} - 5$$

6.
$$g(x) = -5(2^{x-1}) + 7$$

In Exercises 7-13, list the transformations needed to transform the graph of $h(x) = 3^x$ into the graph of the given function. (Section 3.4 may be helpful.)

7.
$$f(x) = 3^x + 4$$

8.
$$g(x) = 3^{-x}$$

9.
$$k(x) = \frac{1}{4}(3^x)$$

10.
$$g(x) = 3^{0.4x}$$

11.
$$f(x) = 3^{2-x}$$

12.
$$f(x) = 8 + 5(3^x)$$

13.
$$g(x) = 4(3^{-0.15x})$$

In Exercises 14-19, sketch a complete graph of the function.

14.
$$f(x) = 4^{-x}$$

15.
$$f(x) = \left(\frac{5}{2}\right)^{-x}$$

16.
$$f(x) = 2^{3x}$$

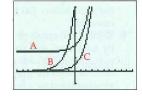
17.
$$g(x) = 3^{\frac{x}{2}}$$

18.
$$f(x) = 2^{5-x}$$

19.
$$g(x) = 2^{x-5}$$

In Exercises 20-21, match the functions to the graphs. Assume a > 1 and c > 1.

20.
$$f(x) = a^x$$
 C $g(x) = a^x + 3$ **A** $h(x) = a^{x+5}$ **B**



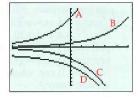
21.
$$f(x) = c^x$$
 B

$$g(x) = -3c^x \quad \mathbf{C}$$
$$h(x) = c^{x+5} \quad \mathbf{\Delta}$$

$$g(x) = -3c^{x} \mathbf{C}$$

$$h(x) = c^{x+5} \mathbf{A}$$

$$k(x) = -3c^{x} - 2 \mathbf{D}$$



In Exercises 22-29, find a viewing window (or windows) that shows a complete graph of the function.

22.
$$k(x) = e^{-x}$$

23.
$$f(x) = e^{-x^2}$$

24.
$$f(x) = \frac{e^x + e^{-x}}{2}$$

24.
$$f(x) = \frac{e^x + e^{-x}}{2}$$
 25. $h(x) = \frac{e^x - e^{-x}}{2}$

26.
$$g(x) = 2^x - 3$$

26.
$$g(x) = 2^x - x$$
 27. $k(x) = \frac{2}{e^x + e^{-x}}$

28.
$$f(x) = \frac{5}{1 + e^{-x}}$$

28.
$$f(x) = \frac{5}{1 + e^{-x}}$$
 29. $g(x) = \frac{10}{1 + 9e^{-\frac{x}{2}}}$

In Exercises 30-34, determine whether the function is even, odd, or neither. (See Excursion 3.4A.)

30.
$$f(x) = 10^x$$
 neither

30.
$$f(x) = 10^x$$
neither
32. $f(x) = \frac{e^x + e^{-x}}{2}$

31.
$$g(x) = 2^{x} - x$$
neither
33. $f(x) = \frac{e^{x} - e^{-x}}{2}$
odd

32.
$$f(x) = \frac{e^x + e^{-x}}{2}$$

34.
$$f(x) = e^{-x^2}$$
 even

35. Use the Big-Little concept (see Section 4.4) to explain why $e^x + e^{-x}$ is approximately equal to e^x when x is large.

In Exercises 36-39, find the average rate of change of the function. (See Section 3.7).

36.
$$f(x) = x(2^x)$$
 as x goes from 1 to 3

37.
$$g(x) = 3^{x^2-x}$$
 as x goes from -1 to 1 -4

38.
$$h(x) = 5^{-x^2}$$
 as x goes from -1 to $0 = \frac{4}{5}$

39.
$$f(x) = e^x - e^{-x}$$
 as x goes from -3 to $-1 \approx 8.84$

In Exercises 40-43, find the difference quotient of the function. (See Section 3.7.)

40.
$$f(x) = 10^x$$

41.
$$g(x) = 5^{x^2}$$

42.
$$f(x) = 2^x + 2^{-x}$$

43.
$$f(x) = e^x - e^{-x}$$

In Exercises 44-49, list all asymptotes of the graph of the function and the approximate coordinates of each local extremum. (See Section 4.3.)

44.
$$f(x) = x(2^x)$$

45.
$$g(x) = x(2^{-x})$$

46.
$$h(x) = e^{\frac{x^2}{2}}$$

47.
$$k(x) = 2^{x^2-6x+2}$$

48.
$$f(x) = e^{-x^2}$$
.

49.
$$g(x) = -xe^{\frac{x^2}{20}}$$

No asymptotes; no extrema

42.
$$\frac{(2^{x+h}+2^{-(x+h)})-(2^x+2^{-x})}{h}$$

ANSWERS

1. Shift the graph of h vertically 5 units downward.

9. Compress the graph of
$$h$$
 vertically by a factor of $\frac{1}{4}$.

13. Reflect the graph of
$$h$$
 across the y-axis, stretch horizontally by a factor of $\frac{1}{0.15} = 6\frac{2}{3}$, then stretch vertically by a factor of 4.

14-19. See pp. 1066-1067.

22.
$$-3 \le x \le 3$$
 and $0 \le y \le 12$

23.
$$-3 \le x \le 3$$
 and $0 \le y \le 1$

24.
$$-4 \le x \le 4$$
 and $0 \le y \le 10$

25.
$$-4 \le x \le 4$$
 and $-10 \le y \le 10$

26.
$$-10 \le x \le 10$$
 and $0 \le y \le 20$

27.
$$-4 \le x \le 4$$
 and $0 \le y \le 1$

28.
$$-10 \le x \le 10$$
 and $0 \le y \le 6$

29.
$$-5 \le x \le 20$$
 and $0 \le y \le 10$

35. When *x* is large,
$$e^{-x} \approx 0$$
, so $e^x + e^{-x} \approx e^x + 0 = e^x$.

40.
$$\frac{10^{x+h}-10^x}{h}$$

- 58. Any non-constant polynomial must either "blow up" or "blow down" as |x| increases. Therefore, since any exponential of the form $f(x) = a^x$ where a is not 1 has the x-axis as a horizontal asymptote in either the positive or negative direction, no polynomial can be the same as an exponential of this form.
- 59. a. Not entirely
 - **b.** The graph of $f_8(x)$ appears to coincide with the graph of g(x)on most calculator screens; when $-2.4 \le x \le 2.4$, the maximum error is at most 0.01.
 - c. Not at the right side of the viewing window; $f_{12}(x)$

- 344 Chapter 5 Exponential and Logarithmic Functions
- 50. If you deposit \$750 at 2.2% interest, compounded annually and paid from the day of deposit to the day of withdrawal, your balance at time t is given by $B(t) = 750(1.022)^t$. How much will you have after 2 years? after 3 years and 9 months?
- \approx \$783.36; \approx \$813.77 The population of a colony of fruit flies t days from now is given by the function $p(t) = 100 \cdot 3^{\frac{1}{10}}$. a. What will the population be in 15 days? in 25 days? ≈520; ≈1559

b. When will the population reach 2500?

***29.3 days 52.** A certain type of bacteria grows according to the function $f(x) = 5000e^{0.4055x}$, where the time x is measured in hours. ≈128,180

a. What will the population be in 8 hours?

b. When will the population reach 1 million? ≈13.07 hr

53. According to data from the National Center for Health Statistics, the life expectancy at birth for a person born in year x is approximated by the function below.

$$D(x) = \frac{79.257}{1 + 9.7135 \times 10^{24} \cdot e^{-0.0304x}}$$
$$(1900 \le x \le 2050)$$

- a. What is the life expectancy of someone born in 1980? in 2000? ≈74.06 yr; ≈76.34 yr
- b. In what year was life expectancy at birth 60 years? 1930
- 54. The number of subscribers, in millions, to basic cable TV can be approximated by the function

$$g(x) = \frac{76.7}{1 + 16 \cdot 0.8444^x}$$

where x = 0 corresponds to 1970. (Source: The Cable TV Financial Datebook and The Pay TV Newsletter)

- a. Estimate the number of subscribers in 1995 and in 2005. ≈**62.2 million**; ≈**73.5 million**
- b. When does the number of subscribers reach 70 million? 2000
- c. According to this model, will the number of subscribers ever reach 90 million?
- No; 76.7 million is the cap. √55. The estimated number of units that will be sold by a certain company t months from now is given by $N(t) = 100,000e^{-0.09t}$.
 - **a.** What are the current sales (t = 0)? What will sales be in 2 months? in 6 months?
 a. 100,000; ≈83,527; ≈58,275

b. No. The graph continues to decrease toward zero.

- b. From examining the graph, do you think the sales will ever start to increase again? Explanation
- **56. a.** The function $g(t) = 1 e^{-0.0479t}$ gives the percentage of the population (expressed as decimal) that has seen a new TV show t we after it goes on the air. What percentage of people have seen the show after 24 weeks?

b. Approximately when will 90% of the people have seen it?

a. ≈68.3%. b. ≈48 wk √ 57. a. The beaver population near a certain lake in year t is approximated by the function 2000 $p(t) = \frac{2000}{1 + 199e^{-0.5544t}}$. What is the population

now (when t = 0) and what will it be in 5 years

b. Approximately when will there be 1000

a. 10; ≈149 b. ≈9.55 yr 58. Critical Thinking Look back at Section 4.3, where the basic properties of graphs of polynomial functions were discussed. Then review the basic properties of the graph of $f(x) = a^x$ discussed in this section. Using these various properties, give an argument to show that for any fixed positive number a, where $a \neq 1$, it is not possible to find polynomial function $g(x) = c_n x^n + \cdots + c_1 x + c_2 x + c_3 x + c_4 x + c_5 x + c_5$ such that $a^x = g(x)$ for all numbers x. In other words, no exponential function is a polynomial function.

59. *Critical Thinking* For each positive integer *n*, let be the polynomial function below.

$$f_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots + \frac{x^n}{n!}$$

- **a.** Using the viewing window with $-4 \le x \le 4$ and $-5 \le y \le 55$, graph $g(x) = e^x$ and $f_4(x)$ on the same screen. Do the graphs appear to
- **b.** Replace the graph of $f_4(x)$ by that of $f_5(x)$, then by $f_6(x)$, $f_7(x)$, and so on until you find a polynomial $f_n(x)$ whose graph appears to coincide with the graph of $g(x) = e^x$ in this viewing window. Use the trace feature to mow from graph to graph at the same value of x to see how accurate this approximation is.
- c. Change the viewing window so that $-6 \le x \le 6$ and $-10 \le y \le 400$. Is the polynomial you found in part b a good approximation for g(x) in this viewing window? If not, what polynomial is a good approximation?