$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Practice B

## 5-2 Properties of Quadratic Functions in Standard Form

Identify the axis of symmetry for the graph of each function.

1. $g(x)=x^{2}-4 x+2$
2. $h(x)=-8 x^{2}+12 x-11$
3. $k(x)=-4(x+3)^{2}+9$

For each function, (a) determine whether the graph opens upward or downward, (b) find the axis of symmetry, (c) find the vertex, and (d) find the $y$-intercept. Then graph the function.
4. $f(x)=-x^{2}+3 x+1$
a. Upward or downward $\qquad$
b. Axis of symmetry
c. Vertex
d. $y$-intercept
5. $g(x)=2 x^{2}+4 x-2$
a. Upward or downward
b. Axis of symmetry
$\qquad$
c. Vertex
d. $y$-intercept $\qquad$


Find the minimum or maximum value of each function. Then state the domain and range of the function.
6. $g(x)=x^{2}-2 x+1$
7. $h(x)=-5 x^{2}+15 x-3$

## Solve.

8. A record label uses the following function to model the sales of a new release.

$$
a(t)=-90 t^{2}+8100 t
$$

The number of albums sold is a function of time, $t$, in days. On which day were the most albums sold? What is the maximum number of albums sold on that day?

## Practice A

5-2 Properties of Quadratic Functions in Standard Form Identify the axis of symmetry for the graph of each function


## Practice C

5-2 Properties of Quadratic Functions in Standard Form

6. An airline sells a 3 -day vacation package. Sales from this vacation package can be modeled by the quadratic function $s(p)=-40 p^{2}+32000 p$. Sales are dependent on the price, $p$, of the package. If the price is set too high, the package won't sell, but if the price is too low, prospective buyers will think it is a scam.
a. At what price, $p$, does the company have the greatest revenue?
b. What are the maximum sales possible based on this model?
c. What is the revenue from the vacation package if the price is set at $\$ 800$ ?

The revenue is 0 , because no packages would be sold at $\$ 800$.

## Practice B

Properties of Quadratic Functions in Standard Form

## Identify the axis of symmetry for the graph of each function.

$\begin{array}{lll}\text { 1. } g(x)=x^{2}-4 x+2 & \text { 2. } h(x)=-8 x^{2}+12 x-11 & \text { 3. } k(x)=-4(x+3)^{2}+9\end{array}$

$$
x=2 \quad x=\frac{3}{4} \quad x=-3
$$

For each function, (a) determine whether the graph opens upward or downward, (b) find the axis of symmetry, (c) find the vertex, and (d) find the $y$-intercept. Then graph the function.
4. $f(x)=-x^{2}+3 x+1$

|  | Downward |
| :--- | :---: |
| a. Upward or downward | $x=1.5$ |
| c. Vertex of symmetry | $\frac{(1.5,3.25)}{1}$ |
| d. $y$-intercept |  |

5. $g(x)=2 x^{2}+4 x-2$
a. Upward or downward
b. Axis of symmetry
c. Vertex
d. $y$-intercept

| Upward |
| :---: |
| $x=-1$ |
| $\frac{(-1,-4)}{-2}$ |



Find the minimum or maximum value of each function. Then state the domain and range of the function.
6. $g(x)=x^{2}-2 x+1$
Minimum: 0 ; domain: all real
numbers; range: $\{y \mid y \geq 0\}$
7. $h(x)=-5 x^{2}+15 x-3$
Maximum: 8.25; domain: all real numbers; range: $\{y \mid y \leq 8.25\}$

## Solve

8. A record label uses the following function to model the sales of a new release.

$$
a(t)=-90 t^{2}+8100 t
$$

The number of albums sold is a function of time, $t$, in days. On which day were the most albums sold? What is the maximum number of albums sold on that day?

Day 45; 182,250 records

## Review for Mastery

Properties of Quadratic Functions in Standard Form
You can use the properties of a parabola to graph a quadratic function in standard form $f(x)=a x^{2}+b x+c, a \neq 0$

| Property | Example: $f(x)=-x^{2}-2 x+2$ |
| :--- | :--- |
| $a>0:$ opens upward <br> $a<0$ : opens downward | $a=-1, b=-2, c=2$ <br> $a<0$, so parabola opens downward. |
| Axis of symmetry: $x=-\frac{b}{2 a}$ | Axis of symmetry: $x=-\frac{b}{2 a}=-\frac{(-2)}{2(-1)}=-1$ |
| Vertex: $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$ | $f\left(-\frac{b}{2 a}\right)=f(-1)=-1(-1)^{2}-2(-1)+2=3$ <br> Vertex: $(-1,3)$ |
| $y$-intercept: $c$ | $y$-intercept is 2, so $(0,2)$ is a point on the graph. |

To graph $f(x)=-x^{2}-2 x+2$ :

1. Plot vertex
2. Sketch axis of symmetry through vertex
3. Plot $y$-intercept.
4. Use symmetry to plot $(-2,2)$.
5. Sketch graph


Use the properties of a parabola to graph $f(x)=x^{2}-4 x+3$.

1. $a=\underline{1}, b=\underline{-4}, c=\underline{3}$
2. The graph opens Upward
3. Axis of symmetry: $x=-\frac{b}{2 a}=\underline{x=2}$
4. $f\left(-\frac{b}{2 a}\right)=f(2)=-1$
5. Vertex: $\quad(2,-1)$
6. $y$-intercept: 3

