\qquad Class \qquad

Practice B

4-4 Graphing Functions

Graph the function for the given domain.

1. $y=|x|-1 ; \mathrm{D}:\{-1,0,1,2,3\}$

Graph the function.

2. $f(x)=x^{2}-3$
3. One of the slowest fish is the blenny fish. The function $y=0.5 x$ describes how many miles y the fish swims in x hours. Graph the function. Use the graph to estimate the number of miles the fish swims in 3.5 hours.

Practice A

4-4 Graphing Functions

Graph the function for the given domain
$y=x+2 ; \mathrm{D}:\{-2,-1,0,1,2\}$

\boldsymbol{x}	$\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{2}$	$(\boldsymbol{x}, \boldsymbol{y})$
-2	$\boldsymbol{y}=-2+2$	$(-2,0)$
-1	$\boldsymbol{y}=-1+2$	$(-1,1)$
0	$\boldsymbol{y}=0+2$	$(0,2)$
1	$\boldsymbol{y}=1+2$	$(1,3)$
2	$\boldsymbol{y}=2+2$	$(2,4)$

Graph the function. The domain is all real numbers.
2. $y=x^{2} \div 2$

	$\boldsymbol{y}=\boldsymbol{x}^{2} \div 2$	$(\boldsymbol{x}, \boldsymbol{y})$
-4	$y=(-4)^{2} \div 2$	$(-4,8)$
-2	$y=(-2)^{2} \div 2$	$(-2,2)$
0	$y=(0)^{2} \div 2$	$(0,0)$
2	$y=(2)^{2} \div 2$	$(2,2)$
4	$y=(4)^{2} \div 2$	$(4,8)$

3. A Pacific salmon can swim at a maximum speed of $8 \mathrm{mi} / \mathrm{h}$. The function $y=8 x$ describes how many miles y the tish swims in x hours. Graph the function. Use the graph to estimate the number of miles the fish swims in 3.5 hours.

x	$y=8 x$	(x, y)
0	$y=8(0)$	$(0,0)$
1	$y=8(1)$	$(1,8)$
2	$y=8(2)$	$(2,16)$
3	$y=8(3)$	$(3,24)$
4	$y=8(4)$	$(4,32)$
about 28 miles		

27
Holt Algebra

Practice C

4-4 Graphing Functions

1. Graph $y=1 x-2 \mid+3$ for the following domain:
$\{-2,0,2,4,6\}$
Graph each function.

x	$y=(x+2)^{2}$	(x, y)
-4	$y=(-4+2)^{2}=(-2)^{2}=4$	$(-4,4)$
-3	$y=(-3+2)^{2}=(-1)^{2}=1$	$(-3,1)$
-2	$y=(\underline{-2}+2)^{2}=(0)^{2}=\underline{0}$	$(-2,0)$
-1	$\left.y=(-1+2)^{2}=(1)\right)^{2}=1$	$(-1,1)$
0	$y=\underline{(0+2)^{2}=(2)^{2}=4}$	$(0,4)$

2. $f(x)=\frac{1}{2} x-3$

x	$y=\frac{1}{2} x-3$	(x, y)
-4	$y=\frac{1}{2}(-4)-3=-2-3=-5$	$(-4,-5)$
-2	$y=\frac{1}{2}(-2)-3=-1-3=-4$	$(-2,-4)$
0	$y=\frac{1}{2}(0)-3=0-3=-3$	$(0,-3)$
2	$y=\frac{1}{2}(2)-3=1-3=-2$	$(2,-2)$
4	$y=\frac{1}{2}(4)-3=2-3=-1$	$(4,-1)$

