Practice B

4-4 Graphing Functions

Graph the function for the given domain.

1.
$$y = |x|-1$$
; D: $\{-1, 0, 1, 2, 3\}$

Graph the function.

2.
$$f(x) = x^2 - 3$$

3. One of the slowest fish is the blenny fish. The function y = 0.5x describes how many miles y the fish swims in x hours. Graph the function. Use the graph to estimate the number of miles

the fish swims in 3.5 hours.

Practice A

4-4 Graphing Functions

Graph the function for the given domain.

1. y = x + 2; D: $\{-2, -1, 0, 1, 2\}$

X	y = x + 2	(x , y)	
-2	y = -2 + 2	(-2, 0)	
-1	y = -1 + 2	(-1, 1)	
0	y = 0 + 2	(0, 2)	
1	y = 1 + 2	(1, 3)	
2	y = 2 + 2	(2, 4)	

Graph the function. The domain is all real numbers.

2. $y = x^2 \div 2$

x	$y=x^2\div 2$	(x, y)	
-4	$y = (-4)^2 \div 2$	(-4, 8)	
-2	$y = (-2)^2 \div 2$	(-2, 2)	
0	$y=(0)^2 \div 2$	(0, 0) (2, 2)	
2	$y = (2)^2 \div 2$		
4	$y=(4)^2 \div 2$	(4, 8)	

3. A Pacific salmon can swim at a maximum speed of 8 mi/h. The function y=8x describes how many miles y the fish swims in x hours. Graph the function. Use the graph to estimate the number of miles the fish swims in 3.5 hours

x	y = 8x	(x, y) (0, 0) (1, 8) (2, 16) (3, 24)	
0	y = 8(0)		
1	y = 8(1)		
2	y = 8(2)		
3	y = 8(3)		
4	y = 8(4)	(4, 32)	
	0 1 2	0 $y = 8(0)$ 1 $y = 8(1)$ 2 $y = 8(2)$ 3 $y = 8(3)$	

about 28 miles

Holt Algebra 1

LESSON Practice B

4-4 Graphing Functions

Graph the function for the given domain

1. y = |x|-1; D: $\{-1, 0, 1, 2, 3\}$

Graph the function.

2. $f(x) = x^2 - 3$

3. One of the slowest fish is the blenny fish. The function y = 0.5x describes how many miles y the fish swims in x hours. Graph the function. Use the graph to estimate the number of miles the fish swims in 3.5 hours.

about 1.75 miles

Copyright © by Holt, Rinehart and Winston. All rights reserved.

27

Copyright © by Holt, Rinehart and Winston. All rights reserved.

28

Holt Algebra 1

Practice C 4-4 Graphing Functions

1. Graph y = |x - 2| + 3 for the following domain: $\{-2, 0, 2, 4, 6\}$

2. Graph $y = (\frac{X}{4})^2 + 2$.

3. A human being can swim at a maximum rate of 7.4 feet per second. The function y = 7.4x describes how many feet y a person can swim in x seconds. Graph the function. Use the graph to estimate the maximum number of feet a person can swim in 4.5 seconds.

about 33 feet

Copyright © by Holt, Rinehart and Winston. All rights reserved.

29

Holt Algebra 1

Reteach

4-4 Graphing Functions

There are three steps to graphing a function.

Graph f(x) = |x| + 2.

Remember that f(x) is function notation for y, so rewrite the function as y = |x| + 2.

Step 1: Generate points.
Unless a domain is given Unless a domain is given, you can pick any values of x

Graph each function.

••	1. y (x 2)					
	X	$y=(x+2)^2$	(X, Y)			
	-4	$y = (-4 + 2)^2 = (-2)^2 = 4$	(-4, 4)			
	-3	$y = (-3 + 2)^2 = \left(\frac{-1}{2}\right)^2 = \frac{1}{2}$	(-3, 1)			
	-2	$y = \left(\underline{-2} + 2\right)^2 = \left(\underline{0}\right)^2 = \underline{0}$	(-2, 0)			
	-1	$y = (-1 + 2)^2 = (1)^2 = 1$	(-1, 1)			
	0	$y = (0 + 2)^2 = (2)^2 = 4$	(0, 4)			
2. $f(x) = \frac{1}{2}x - 3$						

Holt Algebra 1