\qquad Date \qquad Class \qquad

LESSON
3-6

Reteach

Solving Compound Inequalities

Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time.

Solve $2<x+3 \leq 5$ and graph the solutions.
The two inequalities are: $2<x+3$ AND $x+3 \leq 5$.
Solve $2<x+3$.
Solve $x+3 \leq 5$.
$2<x+3 \quad x+3 \leq 5$
-3 -3 Add -3 to both sides. $\quad-3 \quad-3 \quad$ Add -3 to both sides.
$-1<x$

$$
x \leq 2
$$

Graph $x>-1$.

Graph $x \leq 2$.

Use overlapping regions for compound inequalities with AND.

Graph $-1<x \leq 2$.

Write the two inequalities that must be solved in order to solve each compound inequality.

1. $-3<x-4 \leq 10$ \qquad
\qquad
2. $8 \leq m+4 \leq 15$ \qquad AND \qquad
3. Graph $-2 \leq w<6$ by graphing each inequality separately. Then graph the compound inequality.

Solve each compound inequality and graph the solutions.
4. $-5<k-1<0$
5. $-4<2 x-8 \leq 6$

\qquad Date \qquad Class \qquad

Reteach

3-6 Solving Compound Inequalities (continued)

Compound inequalities using OR require you to find solutions that satisfy either inequality.

Solve $4 x>12$ OR $3 x \leq-15$ and graph the solutions.
The two inequalities are: $4 x>12$ OR $3 x \leq-15$.
Solve $4 x>12$.
Solve $3 x \leq-15$.

$$
\begin{aligned}
\frac{4 x}{4} & >\frac{12}{4} & \text { Divide both sides by } 4 . & \frac{3 x}{3}
\end{aligned}
$$

Graph $x>3$.

Graph $x \leq-5$.

Graph $x>3$ OR $x \leq-5$.

Use both regions for compound inequalities with OR.

Write the compound inequality shown by each graph.
6.

7.

8. Graph $k \leq-1$ OR $k>4$ by graphing each inequality separately. Then graph the compound inequality.

Solve each compound inequality and graph the solutions.
9. $x+2 \geq 5$ OR $x+6<2$
10. $6 b \geq 42$ OR $3 b \leq-3$
\qquad

Practice A

3-6 Solving Compound Inequalities

Graph each inequality, and then graph the compound inequality.

$\xrightarrow{x>-3}$

intersection: $x>-3$ AND $x \leq 4$
2. $z<0$
 $z>2$
$\xrightarrow[-6]{ }$
union: $z<0$ OR $z>2$
$\xrightarrow[-6]{\underset{-5}{1}} \mathbf{1}$
Write the compound inequality shown by each graph.

Fill in the blanks to solve each compound inequality
Graph the solutions.
5. $n+5<2$ OR $n+5 \geq 9$
6. $-11 \leq 2 x-1 \leq 1$

$$
\begin{gathered}
-\frac{5}{-}-\frac{5}{-3} \text { OR }-\frac{5}{4}-\frac{5}{4}
\end{gathered}
$$

$$
-11 \leq 2 x-1 \quad \text { AND } 2 x-1 \leq 1
$$

$$
\begin{aligned}
& +\frac{1}{-10}+\frac{1}{-2 x} \quad+\frac{1}{2}+\frac{1}{2} \\
& \hline \underline{2} \leq \underline{2}
\end{aligned}
$$

$$
\rightarrow \underset{-6-5-4-3-2-1}{1}
$$

$$
\div 2 \div 2 \div 2
$$

Write a compound inequality for each problem. Graph the solutions.

$$
\begin{aligned}
& \text { Write a compound inequality for each problem. Graph the solutions. } \\
& \text { 7. To relieve arthritis, Dr. Stoll recommends taking } \\
& \text { between } 400 \text { and } 600 \mathrm{mg} \text { of ibuprofen, inclusive. } \\
& \text { 8. An advertisement for a part-time job says that the } \\
& \text { hourly rate is between } \$ 6.40 \text { and } \$ 9.80 \text { inclusive, } \\
& \text { depending on experience. }
\end{aligned}
$$

Practice C

3-6 Solving Compound Inequalities
Solve each compound inequality and graph the solutions.

1. $-1<4 x-3<5$

Practice B
Solving Compound Inequalities
Write the compound inequality shown by each graph.

Solve each compound inequality and graph the solutions.
5. $-15<x-8<-4$
6. $12 \leq 4 n<28$

$3 \leq n<7$
7. $-2 \leq 3 b+7 \leq 13$
8. $x-3<-3 \mathrm{OR} x-3 \geq 3$

$\xrightarrow{x<00 R x \geq 6}$
9. $5 k \leq-20$ OR $2 k \geq 8$
10. $2 s+3 \leq 7$ OR $3 s+5>26$
$\xrightarrow{k \leq-40 \mathrm{R} k \geq 4}$

Write a compound inequality for each problem. Graph the solutions.
11. The human ear can distinguish sounds between 20 Hz and $20,000 \mathrm{~Hz}$, inclusive

12. For a man to box as a welterweight, he must weigh more than 140 lbs , but at most 147 lbs .

Coprght beb Hell: Rinenarat and Winson.
44
Holt Algebra 1

Reteach

Solving Compound Inequalities

Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time.
Solve $2<x+3 \leq 5$ and graph the solutions.
The two inequalities are: $2<x+3$ AND $x+3 \leq 5$.
Solve $2<x+3$

$$
\text { Solve } x+3 \leq 5
$$

$$
2<x+3
$$

$$
x+3 \leq 5
$$

-3 -3 Add -3 to both sides.
-3 -3 Add -3 to both sides

$$
-1<x
$$

$$
x \leq 2
$$

Graph $x \leq 2$

Use overlapping

inequalities with AND.
ind
ind

Write the two inequalities that must be solved in order to solve each compound inequality.

1. $-3<x-4 \leq 10$		
2. $8 \leq m+4 \leq 15$	$-3<x-4$	AND $\frac{x-4 \leq 10}{8 \leq m+4}$

3. Graph $-2 \leq w<6$ by graphing each
 compound inequality.

Solve each compound inequality and graph the solutions.
4. $-5<k-1<0$
5. $-4<2 x-8 \leq 6$

Cony © by Holl, Rinehart and Winston
AAls resesved.
46

Reteach

3-6 Solving Compound Inequalities (continued)

Compound inequalities using OR require you to find solutions that satisfy
either inequality.
Solve $4 x>12$ OR $3 x \leq-15$ and graph the solutions.
The two inequalities are: $4 x>12$ OR $3 x \leq-15$.

Write the compound inequality shown by each graph.

Solve each compound inequality and graph the solutions.

9. $x+2 \geq 5 \mathrm{OR} x+6<2$	10. $6 b \geq 42$ OR $3 b \leq-3$
$x \geq 3$ OR $x<-4$	$b \geq 7$ OR $b \leq-1$

Copy by Hot, Rinehart and Winston.	47	Holt Algebra 1

Problem Solving

Solving Compound Inequalities

Write and solve an inequality for each situation.

1. The Mexican Tetra is a tropical fish that requires a water temperature between 68 and 77 degrees Fahrenheit, inclusive. An aquarium is heated 8 degrees so that a Tetra can live in it. What temperatures could the water have been before the heating?
$68 \leq t+8 \leq 77 ;$
$60 \leq t \leq 69$
2. A local company is hiring trainees with less than 1 year of experience and managers with 5 or more years of experience. Graph the solutions

3. Nerissa's car can travel between 380 and 410 miles on a full tank of gas. She filled her gas tank and drove 45 miles. How many more miles can she drive without running out of gas?

$$
380 \leq m+45 \leq 410
$$

$$
335 \leq m \leq 365
$$

4. Marty's allowance is doubled and is now between $\$ 10$ and $\$ 15$, inclusive. What amounts could his allowance have been before the increase? Graph the solutions.

$10 \leq 2 a \leq 15 ;$
$5 \leq a \leq 7.5$

The elliptical orbits of planets bring them closer to and farther from the Sun at different times. The closest (perihelion) and furthest (aphelion) points are given for three planets below. Use this data to answer questions 5-7.
5. Which inequality represents the distances d from the sun to Neptune?
A $d \leq 4444.5$
B $d \leq 4545.7$
(C) $4444.5 \leq d \leq 4545.7$

D $d=4444.5$ OR $d \geq 4545.7$
6. A NASA probe is traveling between Uranus and Neptune. It is currently between their orbits. Which inequality shows the possible distance p from the probe to the Sun?

Planet	Perihelion (in $\mathbf{1 0}^{\mathbf{6}} \mathbf{~ k m}$)	Aphelion (in $\mathbf{1 0}^{\mathbf{6}} \mathbf{~ k m}$)
Uranus	2741.3	3003.6
Neptune	4444.5	4545.7
Pluto	4435.0	7304.3

F $1542.1<p<1703.2$
7. At what distances o do the orbits of Neptune and Pluto overlap?
A $4435.0 \leq 0 \leq 4444.5$
(B) $4435.0 \leq 0 \leq 4545.7$

C $4444.5 \leq 0 \leq 7304.3$
D $4545.7 \leq 0 \leq 7304.3$
(G) $2741.3<p<4545.7$

H $3003.6<p<4444.5$
J $7185.8<p<7549.3$
Copright oby Holt
Al Tinht s reserved.
49

Challenge
 3-6. Solving Compound Inequalities

The inequality $a \leq x \leq b$, where $a<b$, is the set of all real numbers between a and b, including a and b. The corresponding set of points on the number line is called a closed inverval.

In Exercises 1-7, n is an integer and $n-\frac{1}{4} \leq x \leq n+\frac{1}{4}$. Graph the solutions for the given values of n on the number line below.

1. $n=0$
2. $n=0$ or $n=1$
3. $\mathrm{n}=0$ or $n=-1$
4. $n=-2,-1,0,1$, or 2
5. $n=-3,-2,-1,0,1,2$, or 3
6. $n=-4,-3,-2,-1,0,1,2,3$, or 4

7. Suppose that the graphs for all values of n are shown on the number line. Describe the graph. Answers may vary. Sample answer: closed intervals centered at each integer with each interval being $\frac{1}{2}$ unit long
For each set of intervals on the given number line, write a
compound inequality involving $\boldsymbol{n}, \boldsymbol{x}$, and conjunction to
describe the entire graph.

8. a. Let n be an integer. Describe the interval $1-\frac{1}{n} \leq x \leq 1+\frac{1}{n}$.

Answers may vary. Sample answers: The center of the interval is 1 , and its length is $\frac{2}{n}$.
b. What can you say about the interval as n gets larger.

As n gets larger, the center remains at 1, but the length of the interval gets smaller.

Cogyight oby Holt, Rinehart and Wistor
All
Althis resevived
48
Holt Algebra 1
Reading Strategies
Compare and Contrast
There are two types of compound inequalities: AND statements and OR statements. The chart below shows their similarities and differences.

Answer each question using the examples given above.

1. Which has more whole number solutions: the AND or the OR statement? OR
2. List 3 whole number solutions to the AND statement. Possible answer: 5, 6, 7
3. List 3 whole number solutions to the OR statement. Possible answer: 3,10,11
4. Which is best described as having solutions between two values: the AND statement or the OR statement?
5. The shaded region in each Venn diagram represents the solutions to compound inequalities. Label them either OR statement or AND statement.

50
 Holt Algebra 1
