Name	Date	(Class	

LESSON Reteach

3-6 Solving Compound Inequalities

Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time.

Solve $2 < x + 3 \le 5$ and graph the solutions.

The two inequalities are: 2 < x + 3 AND $x + 3 \le 5$. Solve 2 < x + 3. Solve $x + 3 \le 5$. 2 < x + 3 $x + 3 \leq 5$ Add – 3 to both sides. Add – 3 to both sides. -3 -3 -3 -3-1 < x $x \le 2$ Graph x > -1. -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 Use overlapping regions for compound Graph $x \leq 2$. -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 5 6 7 inequalities with AND. Graph $-1 < x \le 2$. -8 -7 -6 -5 -4 -3 -2 -1 0 2 3 5 6 7

Write the two inequalities that must be solved in order to solve each compound inequality.

4.
$$-5 < k - 1 < 0$$
 5. $-4 < 2x - 8 \le$

6

Name	

Write the compound inequality shown by each graph.

6. −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 **7.** -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 **8.** Graph $k \le -1$ OR k > 4 by graphing -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 each inequality separately. Then graph the compound inequality. -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Solve each compound inequality and graph the solutions.

9. $x + 2 \ge 5$ OB x + 6 < 2

10. $6b \ge 42 \text{ OR } 3b \le -3$

3-6 Solving Compound Inequalities	3-6 Solving Compound Inequalities
Graph each inequality, and then graph the compound inequality.	Write the compound inequality shown by each graph.
1. $x > -3$ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6	1. $\xrightarrow{-6-5-4}$ -3-2-1 0 1 2 3 4 5 6 $-2 < x < 4$ 2. $\xrightarrow{-4-5-4-3-2-1}$ 1 2 3 4 5 6 $x < -3 \text{ OR } x \ge 3$
$x \le 4$ $z > 2$	
$\begin{array}{c} \bullet \bullet$	3. $4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Write the compound inequality shown by each graph.	Solve each compound inequality and graph the solutions. 5. $-15 < x - 8 < -4$ 6. $12 \le 4n < 28$
│ _ · · · · · · · · · · · · · · · · · · 	$-7 < x < 4$ $3 \le n < 7$
3. $_{-6-5-4-3-2-1}^{-3}$ 0 1 2 3 4 5 6 $x \le -1$ OR $x \ge 5$ $x > -4$ AND $x \le -1$	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 5 -7 8 9 10 11
Fill in the blanks to solve each compound inequality.	7. $-2 \le 3b + 7 \le 13$ 8. $x - 3 < -3$ OR $x - 3 \ge 3$
Graph the solutions. 5. $n + 5 < 2$ OR $n + 5 \ge 9$ 6. $-11 \le 2x - 1 \le 1$	$-3 \le b \le 2 \qquad \qquad x < 0 \text{ OR } x \ge 6$
$-5 - 5 - 5 - 5 - 5 - 11 \le 2x - 1 \le 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$n < -3 \text{ OR } n \ge 4 + 1 + 1 + 1 + 1$	9. $5k \le -20 \text{ OR } 2k \ge 8$ 10. $2s + 3 \le 7 \text{ OR } 3s + 5 > 26$
$-10 \le 2x \text{AND} 2x \le 2$	$k \le -4 \text{ OR } k \ge 4 \qquad \qquad s \le 2 \text{ OR } s > 7$
$\xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} $	-6-5-4-3-2-10123456 0123456789
$\underline{-5} \le x$ AND $x \le \underline{1}$	Write a compound inequality for each problem. Graph the solutions.
	11. The human ear can distinguish sounds between 20 Hz and 20,000 Hz, inclusive. $20 \le h \le 20,000$
Write a compound incrusity for each machine. Crark the colutions	→ → → + + + + + + + + + + + + + + + + +
Write a compound inequality for each problem. Graph the solutions. 7. To relieve arthritis, Dr. Stoll recommends taking $ 400 \le m \le 600 $	
between 400 and 600 mg of ibuprofen, inclusive.	12. For a man to box as a welterweight, he must $140 < w \le 147$
8. An advertisement for a part-time job says that the boundy rate is between \$6.40 and \$9.80 inclusive $6.40 \le r \le 9.80$	weigh more than 140 lbs, but at most 147 lbs.
hourly rate is between \$6.40 and \$9.80 inclusive, depending on experience.	139 140 141 142 143 144 145 146 147 148
Copyright D by Holl, Rinehard and Winston. 43 Holl Algebra 1	Copyright D by Hold, Reventiant and Winston. 44 Holt Algebra 1
All rights reserved.	All rights reserved.
	LESSON Reteach
3-6 Solving Compound Inequalities	3-6 Solving Compound Inequalities
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions.	Reteach Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time.
3-6 Solving Compound InequalitiesSolve each compound inequality and graph the solutions.1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions.	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 6$	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. Solve $x + 3 \le 5$.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ $a \le 1$ OR $a \ge 6$ $a \le 1$ OR $a \ge 6$ $a \le 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ (1, -1) < 4x - 3 < 5 $(2, -1) < -1 < 2 \text{ OR } 3a - 5 \ge 13$ (1, -1) < 4x - 3 < 5 $(2, -1) < -1 < 0 \text{ OR } 3a - 5 \ge 13$ (1, -1) < 4x - 3 < 5 $(2, -1) < -1 < 0 \text{ OR } 3a - 5 \ge 13$ $(3, -y - 2 > 6 \text{ OR } 4y + 8 \le 20)$ $(4, -2) < -1 < 0 \text{ OR } 4y - 4 \le x \le -1$ (2, -1) < (2, -1) < (2, -1) < (2, -1) < (2, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -1) < (3, -	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. Solve $x + 3 \le 5$.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 6$ a = -7 OR a = -7	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. Solve $x + 3 \le 5$. 2 < x + 3 $x + 3 \le 5$
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $3a - y - 2 > 6 \text{ OR } 4y + 8 \le 20$ $y > -8 \text{ OR } y \le 3$; all real numbers $-2 - 1 \text{ O } 1 = 2 \text{ o } 4 \le 5 = -7 \text{ o } 5 = -4 \text{ o } 3 = -5 \ge 13$ $-2 - 1 \text{ O } 1 = 2 \text{ o } 3 = -5 \ge 13$ $-2 - 1 \text{ O } 1 = 2 \text{ o } 4 \le 5 = -7 \text{ o } 5 = -7 $	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 3 = 5. 3 = -3. Add -3 to both sides. 3 = -3. Add -3 to both sides. 3 = -3. 3 = -3.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 6$ a = -7 OR a = -7	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. Solve $x + 3 \le 5$. 2 < x + 3. 2 < x + 3. $x + 3 \le 5$. -3 = -3. -3 = -3. Add -3 to both sides. -1 < x. Graph $x > -1$. x = 2. x = 3. x = 3.
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 $< x < 2$ a $\le 1 \text{ OR } a \ge 6$ a $\le 1 \text{ OR } a \ge 6$ b $= -2 - 1 \text{ O} 1 \ge 3 \text{ A} 5 \text{ G} 7 \text{ B}$ 3. $-y - 2 > 6 \text{ OR } 4y + 8 \le 20$ c $= -2 - 1 \text{ O} 1 \ge 3 \text{ A} 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 3 \text{ A} 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 3 \text{ A} 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 5 \text{ G} 7 \text{ B}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 \text{ B} \text{ C}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 \text{ C}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 \text{ C}$ c $= -2 - 1 \text{ O} 1 \ge 2 \text{ A} 4 \text{ B} \text{ C}$ c $= -2 - 1 \text{ O} 1 = 2 \text{ A} \text{ C} C$	3-6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve $2 < x + 3 \le 5$ and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 \le 5$. Solve $2 < x + 3$. Solve $2 < x + 3$. Solve $x + 3 \le 5$. 2 < x + 3. -3 -3 Add -3 to both sides. -1 < x. Graph $x > -1$. Graph $x > 2$. Graph $x > 2$. -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $3a - y - 2 > 6 \text{ OR } 4y + 8 \le 20$ $y > -8 \text{ OR } y \le 3$; all real numbers $-2 - 1 \text{ O } 1 = 2 \text{ o } 4 \le 5 = -7 \text{ o } 5 = -4 \text{ o } 3 = -5 \ge 13$ $-2 - 1 \text{ O } 1 = 2 \text{ o } 3 = -5 \ge 13$ $-2 - 1 \text{ O } 1 = 2 \text{ o } 4 \le 5 = -7 \text{ o } 5 = -7 $	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: 2 < x + 3 AND x + 3 ≤ 5. Solve 2 < x + 3. Solve x + 3 ≤ 5. 2 < x + 3. -3 -3 Add -3 to both sides. -1 < x Graph x > -1. Graph x = 2. Graph x = 2. Graph -1 < x = 2. Write the two inequalities that must be solved in order to solve each
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 $< x < 2$ a ≤ 1 OR $a \ge 6$ a ≤ 1 OR $a \ge 6$ a ≤ 1 OR $a \ge 6$ a ≤ 1 OR $a \ge 6$ b $= 2 - 1$ or $1 \ge 3$ or $4 \le 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \le 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \le 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ or $4 \ge 6$ c $= 2 - 1 + 3 = -1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ c $= 5 - 4 - 3 - 2 - 1$ or $1 \ge 3$ c $= 2 - 1 + 3$ c $= -14$ OR $z \ge 1.8$ c $= 2 - 1 + 3$ c $= -18$ c $= -18$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: 2 < x + 3 AND x + 3 ≤ 5. Solve 2 < x + 3. Solve 2 < x + 3. Solve 2 < x + 3. Solve x + 3 ≤ 5. 2 < x + 3. -3 -3 Add -3 to both sides. -1 < x Graph x > -1. Graph x = 2. Graph x = 2. Graph x = 2. Graph -1 < x = 2. Write the two inequalities that must be solved in order to solve each compound inequality. 1. $-3 < x - 4 \le 10$ $-3 - 3 < x - 4 \le 10$ $-3 < x - 4 \le 10$
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 1.8$ a = 2x + 1 = 10 $a \ge 1 \text{ OR } a = -18$ $p \ge 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 1 OR a = -18 $p \ge 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 1 OR a = -16 a = 10 a = 10 a = 10 a = 10 a = 10 a = 10 a = 10 $a = 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 10 a	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: 2 < x + 3 AND x + 3 ≤ 5. Solve 2 < x + 3. Solve 2 < x + 3. Solve 2 < x + 3. Solve x + 3 ≤ 5. 2 < x + 3. -3 -3 Add -3 to both sides. -1 < x Graph x > -1. -3 -3 -3 Add -3 to both sides. -1 < x x = 2 Graph x > -1. -3 -7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 -3 - 3 - 3 Add -3 to both sides. -1 < x x = 2 -3 - 3 - 3 Add -3 to both sides. -1 < x x = 2 -3 - 3 - 3 - 3 Add -3 to both sides. -1 < x x = 2 -3 - 3 - 3 - 3 Add -3 to both sides. -1 < x x = 2 -3 - 3 - 3 - 3 - 3 Add -3 to both sides. -1 < x x = 2 -3 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 -3 - 3 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 -3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a \le 1 \text{ OR } a \ge 1.8$ $a = 2x + 1 = 1 \text{ OR } a \ge 1.8$ $a = 2 \text{ AND } p \le -18$ $p \ge 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 10 a = 10	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: 2 < x + 3 AND x + 3 ≤ 5. Solve 2 < x + 3. Solve x + 3 ≤ 5. 2 < x + 3. Add -3 to both sides. -1 < x x ≤ 2 Graph x > -1. Graph x = 2. Graph x = 2. Graph -1 < x ≤ 2. Write the two inequalities that must be solved in order to solve each compound inequality. 13 < x - 4 ≤ 10 2. 8 ≤ m + 4 ≤ 15 3. Graph -2 ≤ w < 6 by graphing each inequality separately. Then graph the argh = -7 - 6 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 0 + 2 - 3 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 - 4 - 5 - 4 - 3 - 2 - 1 - 0 + 2 - 5 + 4 - 5 - 7 = 1 - 4 - 5 + 6 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 + 0 + 2 - 5 + 6 - 7 = 1 - 4 - 5 - 4 - 3 - 2 - 1 + 0 + 2 - 5 + 6 - 7 = 1 - 4 - 5 + 6
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1$ OR $a \ge 6$ $a \le -2x + 1 \le 9$ $b \ge -5k < -10$ OR $3k > -9$ $b \ge -5k < -10$ OR $3k > -9$ $b \ge -5k < -10$ OR $3k > -9$ $a \ge -2k + 3 < -4$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $z \ge 1.8$ $a \ge -2$ AND $a \ge -18$ $b \ge 2$ AND $a \ge -18$ $b \ge 2$ AND $a \ge -18$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 4 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 4 - 50$ $a \ge 10$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 4 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$ $a \ge -5k - 4 - 3 - 2 - 10$ $1 \ge 3 - 50$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 5. 2 < x + 3. 3 = -3. 3 = -3. 4 dd - 3 to both sides. -1 < x. x = 2. Graph $x > -1$. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. 4 = -7 + 6 - 5 - 4 - 3 - 2 - 1. Write the two inequalities that must be solved in order to solve each compound inequality. $1 - 3 < x - 4 \le 10$. 2 - 3 < x - 4. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. $3 - 3 < x - 4 \le 10$. 3 - 3
3. $y - 2 > 6 \text{ OR } 4y + 8 \le 20$ 3. $-y - 2 > 6 \text{ OR } 4y + 8 \le 20$ 4. $3 \le -2x + 1 \le 9$ 7. $-2 \le \frac{n+2}{3} \le 4$ 7. $-2 \le \frac{n+2}{3} \le 4$ 7. $-2 \le \frac{n+2}{3} \le 4$ 9. $y - 8 \le 10$ 9. The United States Postal Service charges a nonmachinable surcharge" for first-class mail if the length of the envelope (parallel to the address) divided by the height of 3.5 inches. Write a compound inequality to show the lengths in	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: 2 < x + 3 AND x + 3 ≤ 5. Solve 2 < x + 3. Solve x + 3 ≤ 5. 2 < x + 3. Caraph x > -1. Graph x = 2. Graph x = 2. Graph x = 2. Write the two inequalities that must be solved in order to solve each compound inequality. 13 < x - 4 ≤ 10 2. 8 ≤ m + 4 ≤ 15. 3. Graph -2 ≤ w < 6 by graphing each inequality separately. Then graph the compound inequality.
3.6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 a < 1 OR a ≥ 6 a < 1 < 	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 3. 3 = -3. 3 =
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a = 1 \text{ OR } a \ge 1.8$ $a = 2 \text{ AND } p \ge -18$ $p \ge 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 1 OR a = 18 $p \ge 2 \text{ AND } p \le -6; \text{ no solutions}$ a = 1 OR a = 18 a = 10 a	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 =
3-6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2 \text{ OR } 3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1 \text{ OR } a \ge 6$ $a = 7 \text{ OR } a \ge 1.8$ $a = 2 \text{ OR } a \ge -18$ $b \ge 2 \text{ AND } a = -18$ $b = 2 \text{ AND } a \le -18$ $b = 2 \text{ AND } a \le -18$ a = 10 a = 2 AND a = -6; no solutions a = 100 a = 10 a = 10	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 2 < x + 3. $3 = \frac{-3}{-3}$ Add -3 to both sides. -1 < x. x = 2 Graph $x > -1$. $4 = \frac{-1}{-6} - \frac{-3}{-3} - \frac{-3}{-3}$. $-3 = \frac{-3}{-3}$ Add -3 to both sides. -1 < x. $x \le 2$ Graph $x > -1$. $4 = \frac{-1}{-6} - \frac{-3}{-3} - \frac{-3}{-2} - 1$ or $2 = \frac{3}{2} + \frac{5}{6} + \frac{6}{7} = \frac{1}{6}$. $3 = \frac{-3}{-7} - \frac{6}{6} - \frac{5}{-4} - \frac{3}{-2} - 1$ or $1 = 2 = \frac{5}{4} + \frac{5}{6} - \frac{7}{6} = \frac{7}{6} - \frac{5}{6} - \frac{4}{-3} - \frac{2}{-2} - 1$ or $2 = \frac{5}{4} + \frac{5}{6} - \frac{7}{6} = \frac{7}{6} - \frac{5}{6} - \frac{4}{-3} - \frac{2}{-2} - 1$ or $2 = \frac{5}{4} + \frac{5}{6} - \frac{7}{6} = \frac{7}{6} - \frac{5}{6} - \frac{4}{-3} - \frac{2}{-2} - 1$ or $1 = \frac{5}{4} - \frac{4}{6} - \frac{7}{6} = \frac{5}{6} - \frac{4}{-3} - \frac{2}{-2} - 1$ or $1 = \frac{5}{4} - \frac{4}{6} - \frac{1}{7} = \frac{5}{6} - \frac{4}{6} - \frac{3}{2} - \frac{2}{1} - \frac{1}{1} - \frac{1}{2} - \frac{1}{2}$
3.6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1$ OR $a \ge 6$ $a \le 1 = 2 + 1 \le 9$ $y \ge -8$ OR $y \le 3$; all real numbers $a \ge -5k < -10$ OR $3k > -9$ $b = \frac{1}{2}z + 3 < -4$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $z \ge 1.8$ $a \ge -2$ AND $p \le -6$; no solutions $a = \frac{-8 \le n \le 10}{a = 1 = 0 \le 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 3. 3 = -3. 3 =
3.6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1$ OR $a \ge 6$ $a \le 1 = 2 + 1 \le 9$ $y \ge -8$ OR $y \le 3$; all real numbers $a \ge -5k < -10$ OR $3k > -9$ $b = \frac{1}{2}z + 3 < -4$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $z \ge 1.8$ $a \ge -2$ AND $p \le -6$; no solutions $a = \frac{-8 \le n \le 10}{a = 1 = 0 \le 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 3. 3 = 3. 3 = 3. 3 = 3. 4 = 3 = 5. 3 = -3. 3 = -3. 4 = -7 = -5 = -4 = -3 = -7 = 0. 3 = -3. 3 = -3. 4 = -7 = -5 = -4 = -3 = -7 = 0. 3 = -3. 4 = -7 = -5 = -4 = -3 = -7 = 0. 3 = -7 = -5 = -4 = -3 = -7 = 0. 3 = -7 = -5 = -4 = -3 = -7 = 0. 4 = -7 = -5 = -4 = -3 = -7 = 0. 4 = -7 = -5 = -4 = -3 = -7 = 0. 4 = -7 = -5 = -4 = -3 = -7 = 0. 4 = -7 = -5 = -4 = -3 = -7 = 0. 4 = -7 = -5 = -4 = -3 = -2 = 10. 3 = 2 = -7 = -5 = -4 = -3 = -2 = 10. 3 = 2 = -7 = -5 = -4 = -3 = -2 = 10. 3 = 2 = -7 = -5 = -4 = -3 = -2 = 10. 3 = 2 = -7 = -5 = -4 = -3 = -2 = 10. 3 = -7 = -5 = -4 = -3 = -2 = 10. 3 = -7 = -5 = -4 = -3 = -2 = 10. 4 = -7 = -5 = -4 = -3 = -2 = 10. 4 = -7 = -5 = -4 = -3 = -2 = 10. 4 = -7 = -5 = -4 = -3 = -2 = 10. 4 = -7 = -5 = -4 = -3 = -2 = 10. 4 = -4 = -4 = -4 = -4 = -4 = -4 = -4 =
3.6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1$ OR $a \ge 6$ $a \le 1 = 2 + 1 \le 9$ $y \ge -8$ OR $y \le 3$; all real numbers $a \ge -5k < -10$ OR $3k > -9$ $b = \frac{1}{2}z + 3 < -4$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $z \ge 1.8$ $a \ge -2$ AND $p \le -6$; no solutions $a = \frac{-8 \le n \le 10}{a = 1 = 0 \le 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 3. 3 = 3. 3 = 3. 3 = 3. 4 = 3 to both sides. -1 < x. x = 2 Graph $x > -1$. 4 = -2 = 6 = 4 = 3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -3. -3 = -3. 4 = -2 = 6 = 4 = 3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -3. -3 = -3. 4 = -2 = 6 = 4 = -3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -2 = -2 = 6 = 4 = -3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. Write the two inequalities that must be solved in order to solve each compound inequality. 1 = -3 < x - 4 = 10. 2 = 8 = m + 4 = 15. 3 = 3 = m + 4 = 15. 3 = -7 = 6 = 5 = 4 = -3 - 2 - 1 or $1 = 2 = 3 = 4 = 5 = 7 = 6$. -4 < k < 1. 4 = -4
3.6 Solving Compound Inequalities Solve each compound inequality and graph the solutions. 1. $-1 < 4x - 3 < 5$ 2. $3a - 5 \le -2$ OR $3a - 5 \ge 13$ 0.5 < x < 2 $a \le 1$ OR $a \ge 6$ $a \le 1 = 2 + 1 \le 9$ $y \ge -8$ OR $y \le 3$; all real numbers $a \ge -5k < -10$ OR $3k > -9$ $b = \frac{1}{2}z + 3 < -4$ OR $\frac{2}{3}z - 1 \ge \frac{1}{5}$ $z < -14$ OR $z \ge 1.8$ $a \ge -2$ AND $p \le -6$; no solutions $a = \frac{-8 \le n \le 10}{a = 1 = 0 \le 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	3.6 Solving Compound Inequalities Compound inequalities using AND require you to find solutions so that two inequalities will be satisfied at the same time. Solve 2 < x + 3 ≤ 5 and graph the solutions. The two inequalities are: $2 < x + 3$ AND $x + 3 ≤ 5$. Solve $2 < x + 3$. 2 < x + 3. 2 < x + 3. 2 < x + 3. 3 = 3. 3 = 3. 3 = 3. 3 = 3. 4 = 3 to both sides. -1 < x. x = 2 Graph $x > -1$. 4 = -2 = 6 = 4 = 3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -3. -3 = -3. 4 = -2 = 6 = 4 = 3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -3. -3 = -3. 4 = -2 = 6 = 4 = -3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. 3 = -2 = -2 = 6 = 4 = -3 - 2 - 1 or $2 = 3 = 4 = 5 = 7 = 6$. Write the two inequalities that must be solved in order to solve each compound inequality. 1 = -3 < x - 4 = 10. 2 = 8 = m + 4 = 15. 3 = 3 = m + 4 = 15. 3 = -7 = 6 = 5 = 4 = -3 - 2 - 1 or $1 = 2 = 3 = 4 = 5 = 7 = 6$. -4 < k < 1. 4 = -4

