$\qquad$ Date $\qquad$ Class $\qquad$
Lissoun

## Reteach

## 3-5 Solving Inequalities with Variables on Both Sides

Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.

Solve $x>8(x-7)$.
Collect the variables on the left.

$$
\begin{array}{rll}
x & >8(x-7) & \\
x & >8 x-56 & \text { Distribute. } \\
\frac{-8 x}{-7 x} & >-8 x & \\
\text { Add }-8 x \text { to both sides. } \\
\frac{-7 x}{-7}>\frac{-56}{-7} & \begin{array}{l}
\text { Divide both sides } \\
\text { by }-7 .
\end{array} \\
x<8 & & \text { Reverse the sign. }
\end{array}
$$

Solve $x>8(x-7)$.
Collect the variables on the right.

$$
\begin{aligned}
& x>8(x-7) \\
& x>8 x-56 \quad \text { Distribute }
\end{aligned}
$$

$$
\frac{-x}{0} \frac{-x}{7 x-56} \quad \text { Add }-x \text { to both sides. }
$$

$$
\underline{+56} \quad+56
$$

$$
56>7 x
$$

$$
\frac{56}{7}>\frac{7 x}{7}
$$

Divide both sides
by 7 .

Notice that if you want to have the variable on the left to make graphing solutions easier, you may still need to switch the inequality sign, even if you did not multiply or divide by a negative number.

Write the first step you would take to solve each inequality if you wanted to keep the variable positive.

1. $6 y<10 y+1$
2. $4 p-2 \geq 3 p$
3. $5-3 r \leq 6 r$

Solve each inequality.
4. $8 c+4>4(c-3)$
5. $5(x-1)<3 x+10-8 x$
6. $-8+4 a-12>2 a+10$
$\qquad$ Date $\qquad$ Class $\qquad$

## LESSON

Reteach

## 3-5 Solving Inequalities with Variables on Both Sides (continued)

An inequality with infinite solutions is called an identity.

Solve $-2 x-5 \leq 4 x+8-6 x$.
$-2 x-5 \leq 4 x+8-6 x$
$-2 x-5 \leq-2 x+8 \quad$ Combine like terms.
$+2 x \quad+2 x \quad$ Add $2 x$ to each side.
True statement.
This is an identity.
The solution is the set of all real numbers.
An inequality with no solutions is called a contradiction.
Solve $3(x-4)>7+3 x$.

$$
\begin{array}{r}
3(x-4)>7+3 x \\
3 x-12>7+3 x \\
-3 x-\quad-3 x \\
\hline
\end{array}
$$

Distribute.
Add $-3 x$ to each side.

$$
-12>7 x
$$

False statement.
This is a contradiction.

## Check any value of $x$ :

Try $x=3$.

$$
\begin{aligned}
-2 x-5 & \leq 4 x+8-6 x \\
-2(3)-5 & \stackrel{?}{=} 4(3)+8-6(3) \\
-6-5 & \stackrel{?}{\leq} 12+8-18 \\
-11 & \stackrel{?}{\leq} 2 \checkmark
\end{aligned}
$$

## Check any value of $x$ :

Try $x=2$.

$$
\begin{aligned}
3(x-4) & >7+3 x \\
3(2-4) & \stackrel{?}{?} 7+3(2) \\
3(-2) & \stackrel{?}{?} 7+6 \\
-6 & \stackrel{?}{>} 13 x
\end{aligned}
$$

There are no solutions.

Solve each inequality.
7. $t+5<t+5$
8. $x+5 \leq x+5$
9. $4 y+3(y-2)<7 y$
10. $10 n-4 \leq 5(2 n+1)$
11. $9 x+3-5 x \geq 2(2 x+5)$

## Practice A

3-5 Solving Inequalities with Variables on Both Sides


Write and solve an inequality for each problem.
9. Jay can buy a stereo either online or at a local store. If he buys
online, he gets a $15 \%$ discount, but has to pay a $\$ 12$ shipping fee. At
the local store, the stereo is not on sale, but there is no shipping fee.
For what regular prices is it cheaper for Jay to buy the stereo online?
$p-0.15 p+12<p ; p>80 ;$ greater than $\$ 80$
10. For what values of $x$ is the area of the rectangle greater than the area of the triangle?

$$
6 x>\frac{1}{2}(4)(x+6) ; x>3
$$




Copright oby Holl, Rinehart and Winsto
All

## Practice C

3-5 Solving Inequalities with Variables on Both Sides


## Practice B

Solving Inequalities with Variables on Both Sides

## Solve each inequality and graph the solutions.

$\begin{array}{ll}\text { 1. } 2 x+30 \geq 7 x & \text { 2. } 2 k+6<5 k-3\end{array}$



$$
\begin{aligned}
& \text { 3. } 3 b-2 \leq 2 b+1 \\
& \qquad \begin{array}{c}
b \leq 3 \\
\hline
\end{array}
\end{aligned}
$$

4. $2(3 n+7)>5 n$

5. $5 s-9<2(s-6)$
6. $-3(3 x+5) \geq-5(2 x-2)$



## Solve each inequality.

9. $v+1>v-6$
10. $3(x+4) \leq 3 x$
11. $-2(8-3 x) \geq 6 x+2$
all real numbers
no solutions no solutions

## Write and solve an inequality for each problem.

12. Ian wants to promote his band on the Internet. Site A offers website hosting for $\$ 4.95$ per month with a $\$ 49.95$ startup fee. Site B offers website hosting for $\$ 9.95$ per month with no startup fee. For how many months would lan need to keep the website for Site B to be less expensive than Site A?
$9.95 m<4.95 m+49.95$; $m<9.99$; for 0 to 9 months
13. For what values of $x$ is the area of the rectangle greater than the perimeter?
$7(x+2)>7+(x+2)+7+(x+2) ; x>0.8$
$\qquad$

## Reteach

Solving Inequalities with Variables on Both Sides
Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.
Solve $x>8(x-7)$. Solve $x>8(x-7)$

Collect the variables on the left
$x>8(x-7)$
$x>8 x-56$ Distribute.
$-8 x-8 x \quad$ Add $-8 x$ to both sides.
$-7 x>-56$
$\frac{-7 x}{-7}>\frac{-56}{-7}$

|  | by -7. |
| :--- | :--- |
| $x<8$ | Reverse the sign. |

Notice that if you want to have the variable on the left to make graphing solutions easier, you may still need to switch the inequality sign, even if you did not multiply or divide by a negative number.

Write the first step you would take to solve each inequality if you wanted to keep the variable positive.

| $\text { 1. } 6 y<10 y+1$ | add $-6 y$ to both sides |  |
| :---: | :---: | :---: |
| 2. $4 p-2 \geq 3 p$ | add $-3 p$ to both sides |  |
| 3. $5-3 r \leq 6 r$ | add $3 r$ to both sides |  |
| Solve each inequality. |  |  |
| 4. $8 c+4>4(c-3)$ | 5. $5(x-1)<3 x+10-8 x$ | 6. $-8+4 a-12>2 a+10$ |
| $c>-4$ | $x<\frac{3}{2}$ | $a>15$ |
| ( Copy © by Hotht, Rinehart and Winston. | 38 | Holt Algebra 1 |

## Reteach

3-5 Solving Inequalities with Variables on Both Sides (continued) An inequality with infinite solutions is called an identity
Solve $-2 x-5 \leq 4 x+8-6 x$.
Check any value of $x$ :

| $-2 x-5$ | $\leq 4 x+8-6 x$ |  |
| :--- | :--- | :--- |
| $-2 x-5$ | $\leq-2 x+8$ | Combine like terms. |
| $+2 x$ | $-2 x$ | Add $2 x$ to each side. |
| -5 | $\leq 8 \checkmark$ | True statement. <br> This is an identity. |

$\operatorname{Try} x=3$.
$-2 x-5 \leq 4 x+8-6 x$
$-2(3)-5 \stackrel{?}{乌} 4(3)+8-6(3)$
$-6-5 \stackrel{?}{\leftrightarrows} 12+8-18$
$-11 \stackrel{?}{\geqq} 2 \checkmark$
The solution is the set of all real numbers.

Check any value of $x$ :
Try $x=2$.
An inequality with no solutions is called a contradiction.
Solve 3(x-4)>7+3x.

$$
\begin{aligned}
3(x-4) & >7+3 x \\
3(2-4) & >7+3(2) \\
3(-2) & \geqslant 7+6 \\
-6 & \geqslant 13 x
\end{aligned}
$$

There are no solutions.
Solve each inequality.

| 7. $t+5<t+5$ | 8. $x+5 \leq x+5$ |
| :--- | :--- |
| no solutions  <br> 9. $4 y+3(y-2)<7 y \quad 10.10 n-4 \leq 5(2 n+1)$ 11. $9 x+3-5 x \geq 2(2 x+5)$ <br> all real numbers $\quad$ all real numbers all real numbers |  |

$\qquad$ 39
Holt Algebra 1

## Problem Solving

## 3-5 Solving Inequalities With Variables on Both Sides

## Write and solve an inequality for each situation.

1. Rosa has decided to sell pet rocks at an art fair for $\$ 5$ each. She has paid $\$ 50$ to rent a table at the fair and it costs her $\$ 2$ to package each rock with a set of instructions. For what numbers of sales will Rosa make a profit?
$\qquad$
2. Sophia types 75 words per minute and is just starting to write a term paper. Patton already has 510 words written and types at a speed of 60 words per minute. For what numbers of minutes will Sophia have more words typed than Patton?
$75 m>510+60 m ;$
$m>34$
3. Jamie has a job paying $\$ 25,000$ and expects to receive a $\$ 1000$ raise each year. Wei has a job paying $\$ 19,000$ a year and expects a $\$ 1500$ raise each year. For what span of time is Jamie making more money than Wei?
$25,000+1000 y>$
$19,000+1500 y ; y<12$
4. Keith is racing his little sister Pattie and has given her a 15 foot head start. She runs $5 \mathrm{ft} / \mathrm{sec}$ and he is chasing at $8 \mathrm{ft} / \mathrm{sec}$. For how long can Pattie stay ahead of Keith?
$m>34$
$\frac{15+5 s>8 s ;}{s}$
$s<5$

The table below shows the population of four cities in 2004 and the amount of population change from 2003. Use this table to answer questions 5-6.
5. If the trends in this table continue, after how many years $y$ will the population of Manchester, NH, be more than the population of Vallejo, CA? Round your answer to the nearest tenth of a year.
A $y>0.2$
C $y>34.6$
(B) $y>6.4$
D $y>78.6$
6. If the trends in this table continue for how long $x$ will the population of Carrollton TX be less than the population of Lakew, CO? population of Lakewood, CO? Round your answer to the nearest
tenth of a year
(F) $x<11.7 \quad H \quad x<20.1$

G $x<14.6 \quad$ J $x<28.3$

| City | Population <br> (2004) | Population <br> Change <br> (from 2003) |
| :---: | :---: | :---: |
| Lakewood, CO | 141,301 | -830 |
| Vallejo, CA | 118,349 | -1155 |
| Carrollton, TX | 117,823 | +1170 |
| Manchester, NH | 109,310 | +261 |

## Challenge <br> Above and Below

The grid at right shows the graphs of two functions, $y_{1}=x+3$ and $y_{2}=2 x-1$. These functions can be graphed by creating a table of ordered pairs for each function and then plotting the ordered pairs. The ordered pairs of each function form straight lines as shown.

1. For what value of $x$ is $y_{1}=y_{2}$ ? What happens to the graphs at this $x$-value?
$x=4$; the lines intersect
2. For what values of $x$ is $y_{1}>y_{2}$ ? What happens to the graphs for these $x$-values?
 $x<4$; the line for $y_{1}$ is above (greater than) the line for $y_{2}$
3. The equation $y_{1}=x+3$ tells you that $y_{1}$ is the same as the expression $x+3$. Likewise, $y_{2}=2 x-1$ tells you that $y_{2}$ is the same as $2 x-1$. Use this information to rewrite $y_{1}>y_{2}$ using the variable $x$. $\qquad$
4. Solve the inequality in problem 3 . How do the solutions relate to your answer for problem 2? $\qquad$ $x<4 ;$ same solutions as problem 2
5. Explain how you could use the graph to solve this inequality: $2 x-1 \geq x+3$

Possible answer: Find the $x$-values for which the line for $y_{2}$ is either above (greater than) or intersects (equal to) the line for $y_{1}$. The solutions are $x \geq 4$.
6. Generate ordered pairs for the functions below. For each, plot the points, connect them with straight lines, and label as in the example above

| $y_{1}=\boldsymbol{x}-3$ |  |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| -4 | -7 |
| -2 | -5 |
| 0 | -3 |
| 2 | -1 |
| 4 | 1 |


| $y_{2}=-\mathbf{x}-11$ |  |
| :---: | :---: |
| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| -4 | 1 |
| -3 | -2 |
| -2 | -5 |
| -1 | -8 |
| 0 | -11 |

Use the graph to solve $x-3 \leq-3 x-11$. $x \leq-2$


Copyright © by Holt, Rinenarat and Winston.
40
Holt Algebra 1

## Reading Strategies

 Analyze ChoicesWhen solving an inequality with variables on both sides, you have a choice: Collect the variables on the left, or collect the variables on the right. There are advantages to each, depending on the inequality. Either way, you should get the same answer.

Answer each question.

1. Kirby often forgets to switch the inequality symbol when dividing by a negative. When solving $3 x-10 \geq x$, should Kirby collect the variables on the left or the right? Why?

Left; so he divides by a positive number.
2. Rewrite the inequality $8<t$ so that the variable is on the left. $t>8$
3. Solve the inequality $-2(n+3)>-4 n+8$
by collecting variables on the left, then by
collecting variables on the right.
Which seems better in this case? Why?
$n>7$; left; you do not have to switch the inequality symbol.


| ight © by Holl, Rinehar and Winston. | 42 |
| :--- | :--- |

