Reteach

Date Class

LESSON Solving Inequalities with Variables on Both Sides 3-5

Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.

Solve $x > 8(x - 7)$).	Solve $x > 8(x - 7)$).
Collect the variabl	es on the left.	Collect the variabl	es on the right.
x > 8(x - 7)		x > 8(x - 7)	
x > 8x - 56	Distribute.	x > 8x - 56	Distribute.
<u>-8x</u> <u>-8x</u>	Add – 8x to both sides.	<u>-x</u> <u>-x</u>	Add $-x$ to both sides.
-7x > -56		0 > 7x - 56	
$\frac{-7x}{-7} > \frac{-56}{-7}$	Divide both sides by – 7.	$\frac{+56}{56} > \frac{+56}{7x}$	
<i>x</i> < 8	Reverse the sign.	$\frac{56}{7} > \frac{7x}{7}$	Divide both sides
variable on the lasolutions easier, to switch the ine	u want to have the eft to make graphing you may still need quality sign, even ultiply or divide by a r.	8 > x $x < 8$	by 7.

Write the first step you would take to solve each inequality if you wanted to keep the variable positive.

1. 6y < 10y + 1

- **2.** $4p 2 \ge 3p$
- **3.** 5 − 3*r* ≤ 6*r*

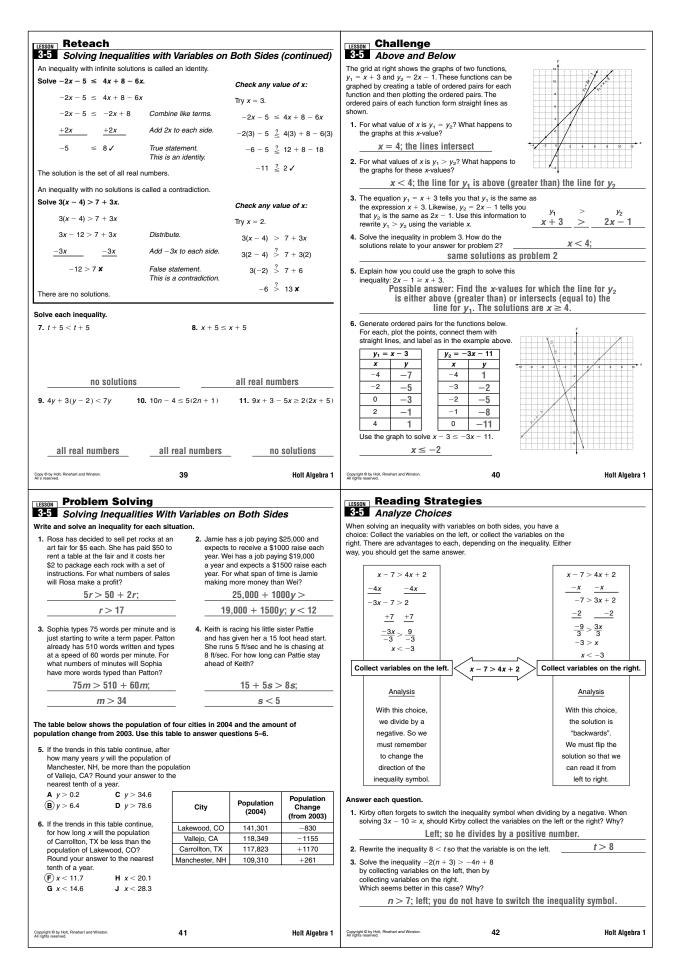
Solve each inequality.

4.	8c + 4 > 4(c - 3)	5. $5(x-1) < 3x + 10 - 8x$	6. $-8 + 4a - 12 > 2a + 10$

te	

Class _____

Name _____ Dat


	s with Variables on	Both Sides (continued)
An inequality with infinite solutions	is called an identity.	
Solve $-2x - 5 \le 4x + 8 - 6x$.		Check any value of x:
$-2x-5 \leq 4x+8-6x$		Try $x = 3$.
$-2x-5 \leq -2x+8$	Combine like terms.	$-2x-5 \leq 4x+8-6x$
+2x $+2x$	Add 2x to each side.	$-2(3) - 5 \stackrel{?}{\leq} 4(3) + 8 - 6(3)$
$-5 \leq 8 \checkmark$	True statement. This is an identity.	$-6-5 \stackrel{?}{\leq} 12+8-18$
The solution is the set of all real nu		-11
An inequality with no solutions is c	alled a contradiction.	
Solve $3(x - 4) > 7 + 3x$.		Check any value of x:
3(x-4) > 7 + 3x		Try $x = 2$.
3x - 12 > 7 + 3x	Distribute.	3(x-4) > 7+3x
-3x $-3x$	Add $-3x$ to each side.	$3(2-4) \stackrel{?}{>} 7+3(2)$
−12 > 7 ×	False statement. This is a contradiction.	$3(-2) \stackrel{?}{>} 7+6$
There are no solutions.		-6 [?] 13 ≭

Solve each inequality.

7. t + 5 < t + 5 **8.** $x + 5 \le x + 5$

9. 4y + 3(y - 2) < 7y **10.** $10n - 4 \le 5(2n + 1)$ **11.** $9x + 3 - 5x \ge 2(2x + 5)$

3-5 Solving Inequalities with Variables on Both Sides Fill in the blanks to solve each inequality.	Solving Inequalities with Variables on Both Sides Solve each inequality and graph the solutions.
1. $2x \le 3x + 8$ 2. $8y > -2(3y - 7)$ 3. $3(5n + 6) < 10n - 4$	1. $2x + 30 \ge 7x$ 2. $2k + 6 < 5k - 3$
$-\frac{3x}{3} - \frac{3x}{3} = \frac{-3x}{3} = \frac{-3y}{3} + \frac{-14}{3} = \frac{15n}{3} + \frac{18}{3} < 10n - 4$	$\qquad \qquad x \le 6 \qquad \qquad \qquad k > 3 \qquad \qquad$
$-1x \le \underline{8}$ $+\underline{6y}$ $+\underline{6y}$ $-\underline{10n}$ $\underline{-10n}$	• 1
$\frac{\div(-1)}{\div} \div \frac{(-1)}{2} \qquad 14y > \frac{14}{2} \qquad \frac{5n}{2} + \frac{18}{2} < -4$	3. $3b - 2 \le 2b + 1$ 4. $2(3n + 7) > 5n$
$x \ge -8$ $\div \underline{14} \div \underline{14}$ $-\underline{-18} -\underline{-18}$	$b \le 3 \qquad \qquad n > -14$
y> <u>1</u> 5n < −22	-3 -2 -1 0 1 2 3 4 5 6 7 8 9 -20-19-18-17-16-15-14-13-12-11-10-9-8
$+\frac{5}{2}$ $+\frac{5}{2}$	5. $5s - 9 < 2(s - 6)$ 6. $-3(3x + 5) \ge -5(2x - 2)$
$\underline{n} < \frac{-4\xi}{5}$	$\qquad \qquad s < -1 \qquad \qquad x \ge 25$
Solve each inequality and graph the solutions. 4. $5x \ge 7x + 4$ 5. $3(b-5) < -2b$	-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 19 20 21 22 23 24 25 26 27 28 29 30 31
$x \le -2$ $b < 3$	7. $1.4z + 2.2 > 2.6z - 0.2$ 8. $\frac{7}{8}p - \frac{1}{4} \le \frac{1}{2}p$
	$\frac{z < 2}{\frac{2}{3}}$
	-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Identify each inequality as an identity (all real numbers are solutions) or contradiction (no solutions).	Solve each inequality.
6. $10 < -2$ 7. $a - 7 \le a$ 8. $2(z + 3) > 2z$	9. $v + 1 > v - 6$ 10. $3(x + 4) \le 3x$ 11. $-2(8 - 3x) \ge 6x + 2$
contradictionidentityidentity	all real numbers no solutions no solutions
Write and solve an inequality for each problem.	Write and solve an inequality for each problem.
9. Jay can buy a stereo either online or at a local store. If he buys online, he gets a 15% discount, but has to pay a \$12 shipping fee. At the local store, the stereo is not on sale, but there is no shipping fee. For what regular prices is it cheaper for Jay to buy the stereo online? p - 0.15p + 12 < p; p > 80; greater than \$80	12. Ian wants to promote his band on the Internet. Site A offers website hosting for \$4.95 per month with a \$49.95 startup fee. Site B offers website hosting for \$9.95 per month with no startup fee. For how many months would lan need to keep the website for Site B to be less expensive than Site A?
10. For what values of <i>x</i> is the area of the rectangle	9.95 <i>m</i> < 4.95 <i>m</i> + 49.95; <i>m</i> < 9.99; for 0 to 9 months
greater than the area of the triangle?	13. For what values of <i>x</i> is the area of the rectangle greater than $\frac{1}{7}$
$6x > \frac{1}{2}(4)(x+6); x > 3$	the perimeter? 7(x+2) > 7 + (x+2) + 7 + (x+2) + x > 0.9
6 cm (x + 6) cm	7(x+2) > 7 + (x+2) + 7 + (x+2); x > 0.8
Copyright © by Holt, Rinehart and Winston. 35 Holt Algebra 1	Copyright @ by Holt, Rinehart and Winston. 36 Holt Algebra 1
Itesson Practice C Solving Inequalities with Variables on Both Sides	Reteach
Solve each inequality. 1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$	Variables must be collected on the same side of an inequality before the inequality can be
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number. Solve $x > 8(x - 7)$. Solve $x > 8(x - 7)$.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ 3. $\frac{1}{2}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ 3. $-2s + 3 \ge -7s$ 4. $\frac{1}{2}(5 - 2x) > -x + 1$ 5. $5(n - 2) < 4(2n + 6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ no solutions	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-8x$ $-7x > -56$ $-x$ $0 > 7x - 56$ $-7x > -56$ $0 > 7x - 56$ $-7x > -56$ -56 $-7x > -56$ -56 $-7x > -56$ -56 $-7x > -56$
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ 3. $-2s + 3 \ge -7s$ $p \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers 7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-\frac{-8x}{-7x} - 56$ Add $-8x$ to both sides. $-7x > -56$ $0 > 7x - 56$
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-8x - 8x$ Add $-8x$ to both sides. $-7x > -56$ $0 > 7x - 56$ $-7x > -56$ $0 > 7x - 56$ $-7x > -56$ Divide both sides $\frac{+56}{-7} - \frac{+56}{27}$ Divide both sides $by -7$. $\frac{56}{56} > 7x$ $x < 8$ Reverse the sign. $\frac{56}{7} > \frac{7x}{7}$ Divide both sides $by 7$.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions 7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-\frac{8x}{-7x} - \frac{56}{-76}$ Add $-8x$ to both sides. $-\frac{-x}{-7x} > -56$ $-\frac{-x}{0} - \frac{-x}{-7x - 56}$ $-\frac{-7x}{-7} > \frac{-56}{-7}$ Divide both sides $\frac{+56}{-7} - \frac{+56}{-7}$ Divide both sides $\frac{+56}{7} - \frac{7}{7}$ Divide both sides $\frac{-7x}{7} < \frac{56}{-7}$ Divide both sides $\frac{-7x}{7} > \frac{56}{-7}$ $\frac{56}{7} > \frac{7x}{7}$ Divide both sidesby 7.Notice that if you want to have the variable on the left to make graphing8 > x
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $= \frac{-8x}{-8x}$ Add $-8x$ to both sides. $-x$ $-7x > -56$ $0 > 7x - 56$ $= \frac{-7x}{-7} > \frac{-56}{-7}$ Divide both sides $\frac{+56}{-7x}$ $x < 8$ Reverse the sign. $\frac{56}{7} > \frac{7x}{7}$ Divide both sides by 7.Volte that if you want to have the
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions 7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions 10. $5b + 20 > -2 + 3b$ 11. $6(k - 5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ For 13-17, use the table at right. The table gives the populations of Toledo, Ohio, and Lexington, Kentucky, during the last three	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the left.x > 8(x - 7)x > 8(x -
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions 7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions 10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ Toledo, OH gives the populations of Toledo, Ohio, and Lexington, Kentucky, during the last three U.S. Censuses. 13. About how much did the population of Toledo change each year? (Note: <i>Mote add</i> decade)) decreased 2000 people each year 14. Write an expression for the population of Toledo 250.000 2000 2000 2000 2000 2000 2000 20	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-\frac{8x}{7} - \frac{8x}{7}$ Add $-8x$ to both sides. $-\frac{7x}{7} > -56$ Divide both sides $\frac{+56}{-77}$ $\frac{+56}{7}$ $x < 8$ Reverse the sign.Notice that if you want to have the variable on the left to make graphing solutions easier, you may still need to switch the inequality sign, even if you did not multiply or divide by a negative number.Write the first step you would take to solve each inequality if you wanted to keep the variable positive.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) = -2p$ 3. $-2s + 3 = -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions 7. $\frac{3x}{8} + 4 = 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions 10. $5b + 20 > -2 + 3b$ 11. $6(k - 5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ Toledo, OH 350,000 330,000 310,000 U.S. Censuses. 13. About how much did the population of Toledo change each year? (Note: Not each decade!) decreased 2000 people each year About how much did the population of Toledo ary number of years after 1980. 350,000 - 2000y 13. About how much did the population of Toledo ary number of years after 1980. 350,000 - 2000y 15. About how much did the population of Toledo ary number of years after 1980.	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left. $x > 8(x - 7)$ $x > 8(x - 7)$.Collect the variables on the left. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-8x - 8x$ Add $-8x$ to both sides. $-x - x$ $-7x > -56$ $0 > 7x - 56$ $y = 7$. $56 > 7x$ $x < 8$ Reverse the sign. $56 > 7x$ $56 > 7x$ $x < 8$ Reverse the sign. $56 > 7x$ $by 7$. $x < 8$ Notice that if you want to have the variable on the left to make graphing solutions easier, you may still need to switch the inequality sign, even if you did not multiply or divide by a negative number.Write the first step you would take to solve each inequality if you wanted to keep the variable positive.
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) = -2p$ 3. $-2s + 3 = -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ b > -11 $k > 1\frac{1}{3}$ $d < 610$ Toledo, OHToledo, OHU.S. Censuses.13. About how much did the population of Toledo change each year? (Note: Not each decadel)decreased 2000 people each yeardecreased 3000 people each year	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ <
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) = -2p$ 3. $-2s + 3 = -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions 7. $\frac{3x}{8} + 4 = 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions 10. $5b + 20 > -2 + 3b$ 11. $6(k - 5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ For 13-17, use the table at right. The table gives the populations of Toledo, Ohio, and Lexington, Kentucky, during the last three U.S. Censuses. 13. About how much did the population of Toledo change each year? (Note: Not each decade!) decreased 2000 people each year 13. About how much did the population of Toledo any number of years after 1980. 350,000 - 2000y 15. About how much did the population of Toledo any number of years after 1980. 350,000 - 2000y	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right.x > 8(x - 7)x > 8(x - 7)Notice that if you w
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) \ge -2p$ 3. $-2s + 3 \ge -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions7. $\frac{3x}{8} + 4 \le 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ Toledo, OHio, and Lexington, Kentucky, during the last three U.S. Censuses.13. About how much did the population of Toledo change each year? (Note: Not each decade!)decreased 2000 people each year $350,000 - 2000y$ 14. Write an expression for the population of Toledo any number of years after 1980.13. $2000 - 2000y$ 15. About how much did the population of Lexington change each year? $acc 3000$ people each year16. Write an expression for the population of Lexington change each year? $acc 3000$ people each year	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$ $x > 8(x - 7)$ $x > 8x - 56$ Distribute. $-8x - 3x$ Add $-8x$ to both sides. $-7x > -56$ $0 > 7x - 56$ $-7x > -56$ $0 > 7x - 56$ $-7x > -56$ Divide both sides $-7x > -56$ $-7x$ Solve $x > 8$ Reverse the sign.Sole $7x$ Notice that if you want to have the variable on the left to make graphing solutions easier, you may still need to switch the inequality sign, even if you did not multiply or divide by a negative number.Write the first step you would take to solve each inequality if you wanted to keep the variable positive.1. $6y < 10y + 1$ $add - 6y$ to both sides $add - 3p$ to both sides2. $4p - 2 \ge 3p$ $add - 3p$ to both sides3. $5 - 3r = 6r$ $add 3r$ to both sides
1. $2x + 1 < 8x - 2$ 2. $4(3p + 5) = -2p$ 3. $-2s + 3 = -7s$ $x > \frac{1}{2}$ $p \ge -1\frac{3}{7}$ $s \ge -\frac{3}{5}$ 4. $\frac{1}{2}(5-2x) > -x + 1$ 5. $5(n-2) < 4(2n+6) + 2$ 6. $\frac{2}{3}y + 6 < \frac{2}{3}y - 6$ all real numbers $n > -12$ no solutions7. $\frac{3x}{8} + 4 = 0.2x + 5$ 8. $-z + 20 > z + 20$ 9. $2a + 10 \le 2(-2a + 3) + 6a$ $x \le 5\frac{5}{7}$ $z < 0$ no solutions10. $5b + 20 > -2 + 3b$ 11. $6(k-5) > 3k - 26$ 12. $0.42d < 152.5 + 0.17d$ $b > -11$ $k > 1\frac{1}{3}$ $d < 610$ For 13-17, use the table at right. The table gives the populations of Toledo, Ohio, and Lexington, Kentucky, during the last three U.S. Censuses. $\frac{1980}{1990}$ 1990}{2000}13. About how much did the population of Toledo change each year? (Note: Not each decade!)decreased 2000 people each year14. Write an expression for the population of Lexington change each year? $200,000 + 3000y$ increased 3000 people each year16. Write an expression for the population of Lexington any number of years after 1980. $200,000 + 3000y$ $350,000 - 2000y < 200,000 + 3000y$ 17. Assuming the patterns in the table continue, write and solve an inequality to find the years in which the population of Lexington will be write and solve an inequality to find the years in which the population of Lexington will be in which the population of Lexington will be attribution of Lexington and solve an inequality to find the years in which the population of Lexington will be in which the population of Lexington will be in which the population of Lexington will be attribution of Lexington will be ato 0000 + 20000 + 200	Variables must be collected on the same side of an inequality before the inequality can be solved. If you collect the variables so that the variable term is positive, you will not have to multiply or divide by a negative number.Solve $x > 8(x - 7)$.Solve $x > 8(x - 7)$.Collect the variables on the left.Collect the variables on the right. $x > 8(x - 7)$

