$\qquad$ Date $\qquad$ Class $\qquad$

## Lesson Practice B

## 3-3 Solving Systems of Linear Inequalities

## Graph each system of inequalities.

1. $\left\{\begin{array}{l}y \leq 3 x-5 \\ y<-\frac{1}{2} x+4\end{array}\right.$

2. $\left\{\begin{array}{l}y<x+5 \\ y \geq 4 x-2\end{array}\right.$


Graph the system of inequalities, and classify the figure created by the solution region.
3. $\left\{\begin{array}{l}x \leq 2 \\ x \geq-3 \\ y \leq 2 x+2 \\ y \geq 2 x-1\end{array}\right.$

4. $\left\{\begin{array}{l}y \leq-x+4 \\ y \leq 3 \\ y \geq 0 \\ y \geq-2 x-1\end{array}\right.$


Solve.
5. The Thespian Club is selling tickets to its annual variety show. Prices are $\$ 8$ for an adult ticket and $\$ 4$ for a student ticket. The club needs to raise $\$ 1000$ to pay for costumes and stage sets. The auditorium has a seating capacity of 240 . Write and graph a system of inequalities that can be used to determine how many tickets have to be sold for the club to meet its goal.


## Practice A

3.3. Solving Systems of Linear Inequalities


## Practice C

3-3. Solving Systems of Linear Inequalities
Graph the system of inequalities, and classify the figure created by the solution region.

1. $\left\{\begin{array}{l}y \leq-x+2 \\ y \leq x+2 \\ y \geq-x-2 \\ y \geq x-2\end{array}\right.$


$$
\text { 2. }\left\{\begin{array}{l}
y<-3 x+4 \\
y>-8 \\
y<x+5 \\
x>-6
\end{array}\right.
$$

$\qquad$

$\left\{\begin{array}{l}y \leq-\frac{2}{3} x+3 \\ y \leq x\end{array}\right.$
$\left\{\begin{array}{l}y \geq-\frac{2}{3} x-5 \\ x \leq 4\end{array}\right.$ Trapezoid

4. Anton wants to divide a maximum of $\$ 20,000$ between two simple interest investment accounts. One pays 6\% interest and the other pays 7.5\% interest. Write and graph a system of inequalities that shows the amounts Anton can invest in each account and still earn at least $\$ 1300$ per year.
$x+y \leq 20,000$ $0.06 x+0.075 y \geq 1300$


Graph the system of inequalities

1. $\left\{\begin{array}{l}y>-x+ \\ y \leq 2\end{array}\right.$
$y \leq 2$
a. Shade Above the line for $y>-x+1$.
b. Shade below the line for $y \leq 2$.
c. Check: possible answer: $(1,3)$
d. Check: possible answer: $(4,0)$


## Practice B

Solving Systems of Linear Inequalities

## Graph each system of inequalities

1. $\left\{\begin{array}{l}y \leq 3 x-5 \\ y<-\frac{1}{2} x+4\end{array}\right.$

2. $\left\{\begin{array}{l}y<x+5 \\ y \geq 4 x-2\end{array}\right.$


Graph the system of inequalities, and classify the figure created by the solution region.
3. $\left\{\begin{array}{l}x \leq 2 \\ x \geq-3 \\ y \leq 2 x+2 \\ y \geq 2 x-1\end{array} \quad\right.$ Parallelogram
4. $\left\{\begin{array}{l}y \leq-x+4 \\ y \leq 3 \\ y \geq 0 \\ y \geq-2 x-1\end{array}\right.$
Trapezoid


Solve.
5. The Thespian Club is selling tickets to its annual variety show. Prices are $\$ 8$ for an adult ticket and $\$ 4$ for a student ticket. The club needs to raise $\$ 1000$ to pay for costumes and stage sets. The auditorium has a seating capacity of 240 . Write and graph a system of inequalities that can be used to determine how many tickets have to be sold for the club to meet its goal. $8 x+4 y \geq 1000$ $x+y \leq 240$


## Review for Mastery

Solving Systems of Linear Inequalities
To use graphs to find the solution to a system of inequalities:

1. Draw the graph of the boundary for the first inequality. Remember to use a solid line for $\leq$ or $\geq$ and a dashed line for $<$ or $>$
2. Shade the region above or below the boundary line that is a solution of the inequality.
3. Draw the graph of the boundary for the second inequality.
4. Shade the region above or below the boundary line that is a solution of the inequality using a different pattern
5. The region where the shadings overlap is the solution region

Graph $\left\{\begin{array}{l}y \leq x+2 \\ x>1\end{array} \quad\right.$ Graph $y \leq x+2$.
Graph $y=x+2$.
Use a solid line for the boundary
Shade the region below the line.


On the same plane, graph $x>1$.


Check: Test a point in the solution region in both inequalities. Try (2, 2).

$$
2 \leq 4
$$

Solve.

| $y \leq x+2$ | $x>1$ |
| :--- | :--- |
| $2 \stackrel{?}{\leq} 2+2$ | $2>1$ |



