\qquad Date \qquad Class \qquad

LESSON

Reteach

3-1 Using Graphs and Tables to Solve Linear Systems

A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations true. Use a table and a graph to solve a system of equations.
$\left\{\begin{array}{l}y+x=2 \\ y-2 x=5\end{array}\right.$ Solve each equation for $y \rightarrow\left\{\begin{array}{l}y=-x+2 \\ y=2 x+5\end{array}\right.$
Make a table of values for each equation.

$y=-x+2$				
x	y			
-2	4			
-1	3			
0	2			
1	1	$\leftrightarrow \quad$	$y=2 x+5$	
:---:	:---:			
x	y			
-2	1			
-1	3			
0	5			
1	7			

On a graph, the point where the lines intersect is the solution.
Use the table to draw the graph of each equation.
The lines appear to intersect at $(-1,3)$.
Substitute $(-1,3)$ into the original equations to check.
$y+x=2$
$y-2 x=5$
$3+(-1) \stackrel{?}{=} 2$
$2=2 \checkmark$
$3-2(-1) \stackrel{?}{=} 5$
$5=5 \checkmark$

Solve the system using a table and a graph. Give the ordered pair that solves both equations.

1. $\left\{\begin{array}{l}x+y=1 \\ 2 x-y=5\end{array}\right.$

$y=-x+1$				
x	y			
0				
1				
2				
3		\quad	$y=2 x-5$	
:---:	:---:			
x	y			
0				
1				
2				
3				

Solution: \qquad

\qquad Date \qquad Class \qquad
Reteach

3-1 Using Graphs and Tables to Solve Linear Systems (continued)

To classify a linear system:
Step 1 Write each equation in the form $y=m x+b$.
Step 2 Compare the slopes and y-intercepts.
Remember: $m=$ slope

Step 3 Classify by the number of solutions of the system. and $b=y$-intercept.

Exactly One Solution Independent	Infinitely Many Solutions Dependent	No Solution Inconsistent
The lines have differe slopes and intersect one point.	The lines have the same slope and y-intercept. Their graph is the same line.	The lines have the same slope and different y-intercepts. The lines are parallel.
$\left\{\begin{array}{l} x+y=3 \\ x-y=1 \end{array}\right.$ Solve each equation for y. $\left\{\begin{array}{l} y=-x+3 ; m=-1 \\ y=x-1 ; m=1 \end{array}\right.$ The slopes are different. The system has one solution and is independent.	$\left\{\begin{array}{l} 2 x=y-1 \\ 4 y-8 x=4 \end{array}\right.$ Solve each equation for y. $\left\{\begin{array}{l} y=2 x+1 ; m=2, b=1 \\ y=2 x+1 ; m=2, b=1 \end{array}\right.$ The slopes and the y-intercepts are the same. The system has infinitely many solutions and is dependent.	$\left\{\begin{array}{l} y+2 x=-3 \\ y-1=-2 x \end{array}\right.$ Solve each equation for y. $\left\{\begin{array}{l} y=-2 x-3 ; m=-2, b=-3 \\ y=-2 x+1 ; m=-2, b=1 \end{array}\right.$ The slopes are the same but the y-intercepts are different. The system has no solution and is inconsistent.

Classify each system and determine the number of solutions.

2. $\left\{\begin{array}{l}y+x=2 \\ y+1=-x\end{array}\right.$
$y=$ \qquad , $m=$ \qquad $b=$ \qquad
3. $\left\{\begin{array}{l}y+1=3 x \\ 2 y-6 x=-2\end{array}\right.$
$y=$ \qquad $m=$ \qquad $b=$ \qquad
$y=$ \qquad , $m=$ \qquad $b=$ \qquad

Number of solutions: \qquad Number of solutions: \qquad

Practice A

3-1 Using Graphs and Tables to Solve Linear Systems
Does the given ordered pair solve the system of equations?
Substitute each value for \boldsymbol{x} and \boldsymbol{y} into the equations. Write yes or no.

1. $(2,-1)\left\{\begin{array}{l}3 x+y=3 \\ x-y=5\end{array}\right.$
2. $(4,5)\left\{\begin{array}{l}x-6 y=-26 \\ 2 x+y=13\end{array}\right.$
3. $(-3,-7)\left\{\begin{array}{l}-x+2 y=1 \\ 4 x-3 y=19\end{array}\right.$
$3(2)+(-1) \stackrel{?}{=} 3$
(2) $-(-1) \stackrel{?}{=} 5$
\qquad
\qquad
\qquad No

Use a table and a graph to solve the system.
4. $\left\{\begin{array}{l}y=x+1 \\ x=2 y+2\end{array}\right.$
$\left\{\begin{array}{l}x=2 y+2\end{array}\right.$
a. Make a table of values for each equation

$y=x+1$	
x	y
-2	-1
-1	0
0	1
1	2
2	3

$x=2 y+2$
b. Use the values in the tables to graph each equation.
c. Which ordered pair solves both equations?
$(-4,-3)$
Use a graph to solve each system.
5. $\left\{\begin{array}{l}x+y=2 \\ x-y=4\end{array}\right.$ \qquad $(3,-1)$
6. $\left\{\begin{array}{l}y=3 x-2 \\ x+y=6\end{array}\right.$ \qquad $(2,4)$

3
Holt Algebra 2

Practice C

3-1 Using Graphs and Tables to Solve Linear Systems

Match each system of equations with the corresponding conditions

that it satisfies.

1. The system is consistent and dependent.
2. The system is inconsistent.
3. The system is consistent and independent.

$y=\frac{2}{3} x+10$
$6 y-4 x=60$

$y=\frac{2}{3} x+10$
$y x+1$

4. A tub containing 16 gallons of water is draining at a rate of 1 gallon per
hour. A basin of 3.5 gallons of water is draining at a rate of 1 gallon
every 6 hours.
a. Write a system of equations that represents y, the number of gallons left in the
container after x hours.

$y=\frac{2}{3} x+10$
$3 y+9=2 x$

$y=-x+16$
$y=-\frac{1}{6} x+3.5$
b. If both containers began draining at the same time, how soon will the tub and basin hold the same amount of water?

15 h
c. When the amounts are equal, how much water will be in each container?
1 gallon

5. Jenna has $\$ 1500$ in a savings account. She adds $\$ 30$ to her account
each month. Luis has $\$ 2400$ in his savings account. He withdraws $\$ 30$
from his account each month.
a. In how many months will they have the same
balance in their savings accounts?
b. What will be the balance in each account?
Holt Algebra 2

Practice B
3-1 Using Graphs and Tables to Solve Linear Systems Classify each system, and determine the number of solutions

1. $\left\{\begin{array}{l}y=-4 x+7 \\ 12 x+3 y=21\end{array}\right.$
2. $\left\{\begin{array}{l}5 y=x-10 \\ y=\frac{x}{5}+3\end{array}\right.$
3. $\left\{\begin{array}{l}x+6 y=-2 \\ 12 x-6 y=0\end{array}\right.$
Consistent,
dependent; infinitely
$\frac{\text { Inconsistent; no }}{\text { solutions }}$
Consistent, indepen-
many solutions
solutions
dent; one solution

Use substitution to determine if the given ordered pair is an element of the solution set for the system of equations. If it is not, give the correct solution.

Solve by graphing a system of equations.
10. A puppy pen is 1 foot longer than twice its width. John wants to increase the length and width by 5 feet each to enlarge the area by 90 square feet. What will be the area of the new pen?
\qquad

11. Keesha has 10 more quarters than dimes, which, together, total $\$ 11.25$. How many coins does she have in quarters and dimes?

35 quarters +25 dimes $=$ 60 coins

Holt Algebra 2
Cogyright ©by Holl, Rinehart and Winston.
All
Aghts resenved.
4
-

Reteach

Using Graphs and Tables to Solve Linear Systems

A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations true. Use a table and a graph to solve a system of equations.
$\left\{\begin{array}{l}y+x=2 \\ y-2 x=5\end{array}\right.$ Solve each equation for $y . \rightarrow\left\{\begin{array}{l}y=-x+2 \\ y=2 x+5\end{array}\right.$
Make a table of values for each equation.

Solve the system using a table and a graph. Give the ordered pair that solves both equations.

1. $\left\{\begin{array}{l}x+y=1 \\ 2 x-y=5\end{array}\right.$
Solution:
$(2,-1)$

$y=-x+1$	
x	y
0	1
1	0
2	-1
3	-2

$y=2 x-5$	
x	y
0	-5
1	-3
2	-1
3	1

Holt Algebra 2

