\qquad Date \qquad Class \qquad

Lesson Practice B

2-5 Linear Inequalities in Two Variables

Graph each inequality.

1. $y<x+2$
2. $y \geq 3 x-5$

Solve each inequality for \boldsymbol{y}. Graph the solution.
3. $-2(3 x+2 y-3) \geq 12$
4. $\frac{-x}{5}+\frac{2 y}{3}>0$

Solve.

5. Marcus volunteers to work at a carnival booth selling raffle tickets.

The tickets cost $\$ 2$ each or 3 for $\$ 5$. His goal is to have at least $\$ 250$ in sales during his shift.
a. Let x be the number of tickets sold for $\$ 2$ each. Let y be the number of tickets sold in sets of 3 for $\$ 5$. Write and graph an inequality for the total number of tickets Marcus must sell to meet his goal.
b. If Marcus sells 75 tickets for $\$ 2$ each, what is the least number of tickets he must sell in sets of 3 to meet his goal?

Practice A

2-5 Linear Inequalities in Two Variables

Choose a point in the shaded solution region of each graph and test it in the inequality. Does it satisfy the inequality? Tell whether the solution region is correct or incorrect

1. $y>3 x-1$
2. $y \geq-x-1$
3. $x<4$

\qquad
\qquad

Graph each inequality.

4. $y>x+3$

$$
\text { 5. } y \leq-2 x+3
$$

Solve each inequality for \boldsymbol{y}. Graph the solution
6. $2 x+3 y<-6$

35
Holt Algebra 2

Practice C

2.5

Linear Inequalities in Two Variables
Solve.
Ticket prices for Wonderful Wave Water Park are $\$ 25.00$ for each child under 12 and $\$ 35.00$ for each adult. When Cassie ends her shift, the total value of her credit card receipts is $\$ 2400$. She also has cash receipts.
Let x be the number of child tickets sold and y be the number of adult tickets sold.
a. Write an inequality that shows the minimum numbe $25 x+35 y>2400$
of tickets Cassie could have sold during her shift.
\qquad
\qquad 61 tickets If Cassie sold 25 adult tickets, what is the minimum number of child tickets she could have sold? \qquad
2. The cost to rent a car from Jumpin' Jalopies is $\$ 15.00$ a day from Monday through Thursday. Friday through Sunday the rental fee is $\$ 10.75$ a day. Let x be the number of days Monday through Thursday that a car is rented. Let y be the number of weekend days that a car is rented.
a. Write an inequality that shows the maximum you would pay to rent the car for 10 consecutive days.
b. Graph the inequality on a graphing calculator. Describe the appropriate domain of x and $y . \quad 4 \leq x \leq 7 ; 3 \leq y \leq 6$
c. Explain why the domain is limited

Possible answer: Depending on when you start the 10-day period, the number of weekdays and weekend days will vary
d. How should you configure the 10 consecutive days in order to spend the minimum to rent a car? Explain your answer

Possible answer: Pick up the car on a Friday and return it the following Sunday. This gives you 6 weekend days at the lower rate and 4 weekdays at the higher rate.

Practice B
2.5. Linear Inequalities in Two Variables

Graph each inequality

1. $y<x+2$

2. $y \geq 3 x-5$

Solve each inequality for \boldsymbol{y}. Graph the solution.
3. $-2(3 x+2 y-3) \geq 12$
4. $\frac{-x}{5}+\frac{2 y}{3}>0$

Solve.

5. Marcus volunteers to work at a carnival booth selling raffle tickets.

The tickets cost $\$ 2$ each or 3 for $\$ 5$. His goal is to have at least
$\$ 250$ in sales during his shift.
a. Let x be the number of tickets sold for $\$ 2$ each. Let y be the number of tickets sold in sets of 3 for $\$ 5$. Write and graph an inequality for the total number of tickets Marcus must sell to meet his goal.

$$
2 x+\frac{5 y}{3} \geq 250
$$

b. If Marcus sells 75 tickets for $\$ 2$ each, what is the least number of tickets he must sell in sets of 3 to meet his goal?

60 tickets

Cogyight by Holt, Rinehart and Winston.
AAl Iryhis tesenved.
36
Holt Algebra 2

Mastery

2-5 Linear Inequalities in Two Variables
Graphing a linear inequality is similar to graphing a linear function.
Graph $y \leq \frac{2}{3} x+1$ using the slope-intercept form.
Step 1 Write the corresponding equation. Then identify the slope and the y-intercept.
$y=\frac{2}{3} x+1$
$m=\frac{2}{3}$ and $b=1$

Step 2 Draw the graph of $y=\frac{2}{3} x+1$.
Draw a solid boundary line for \leq or \geq.
Draw a dashed boundary line for $<$ or $>$.
Step 3 Shade the half-plane below the line for $<$ or \leq. Shade the half-plane above the line for $>$ or \geq.
Step 4 Check using a point in the shaded region. Use (0,0).
$y \leq \frac{2}{3} x+1$
$0 \stackrel{?}{\leq} \frac{2}{3}(0)+1$

Graph each inequality.

1. $y \leq x+2$
a. $m=$
b. $b=$ \qquad

c. boundary line is Solid
d. shade half-plane Below the line
2. $y>-2 x+1$

a. $m=$ -2
b. $b=$
$b=\frac{1}{\text { boundary line is }}$
d. shade half-plane Above the line

Holt Algebra 2

