\qquad Date \qquad Class \qquad

${ }^{\text {LESSON }}$ Reteach

2-5 Solving for a Variable

Solving for a variable in a formula can make it easier to use that formula. The process is similar to that of solving multi-step equations. Find the operations being performed on the variable you are solving for, and then use inverse operations.

	Operations	Solve using Inverse Operations	
$A=I w$ Solve for w.	$\bullet w$ is multiplied by I.	• Divide both sides by I.	
$P=2 I+2 w$ Solve for w.	• w is multiplied by 2.	• Add $-2 /$ to both sides.	
• Then $2 /$ is added.	• Then divide both sides by 2.		

The formula $A=\frac{1}{2} b h$ relates the area A of a triangle to its base \boldsymbol{b} and height \boldsymbol{h}. Solve the formula for \boldsymbol{b}.
$A=\frac{1}{2} b h$
b is multiplied by $\frac{1}{2}$.
$\left(\frac{2}{1}\right) \cdot A=\left(\frac{2}{1}\right) \frac{1}{2} b h \quad$ Multiply both sides by $\frac{2}{1}$.
$2 A=b h \quad b$ is multiplied by h.
$\frac{2 A}{h}=\frac{b h}{h} \quad$ Divide both sides by h.
$\frac{2 A}{h}=b \quad$ Simplify.

Solve for the indicated variable.

1. $P=4 s$ for s
2. $a+b+c=180$ for b
3. $P=\frac{K T}{V}$ for K

The formula $V=\frac{1}{3} I w h$ relates the volume of a square pyramid to its base length I, base width w, and height h.
4. Solve the formula for w.
5. A square pyramid has a volume of $560 \mathrm{in}^{3}$, a base length of 10 in ., and a height of 14 in . What is its base width?

The order of the inverse operations is the order of operations in reverse.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Date \qquad Class \qquad

LEsson Reteach

2-5 Solving for a Variable continued

Any equation with two or more variables can be solved for any given variable.
Solve $x=\frac{y-z}{10}$ for y.
$x=\frac{y-z}{10} \quad y-z$ is divided by 10.
$10(x)=10\left(\frac{y-z}{10}\right) \quad$ Multiply both sides by 10.
$10 x=y-z \quad z$ is subtracted from y. Add z to both sides.
$+z \quad+z$
$10 x+z=y$
Solve $a=b+\frac{c}{d}$ for c.
$a=b+\frac{c}{d}$
$\underline{-b} \quad$ Add $-b$ to each side.
$a-b=\frac{c}{d}$
$d(a-b)=\left(\frac{C}{d}\right) d \quad$ Multiply both sides by d.
$d(a-b)=c \quad$ Simplify.

State the first inverse operation to perform when solving for the indicated variable.
6. $y=x+z$; for z
7. $\frac{f+g}{2}=h$; for g
8. $t=-3 r+\frac{s}{5}$; for s
\qquad
\qquad

Solve for the indicated variable.
9. $3 a b=c$; for a
10. $y=x+\frac{z}{3}$; for z
11. $\frac{m+3}{n}=p$; for m

Practice A

Solving for a Variable

Answer each of the following.

1. The formula $K=C+273$ is used to convert temperatures from degrees Celsius to Kelvin. Solve this formula for C.

$$
C=K-273
$$

2. The formula $T=\frac{1}{f}$ relates the period of a sound wave T to its frequency f Solve this formula for f.

$$
f=\frac{1}{T}
$$

Solve each equation for the variable indicated.

3. $x=5 y$ for y $y=\frac{x}{5}$	4. $s+4 t=r$ for s $s=r-4 t$	$\begin{aligned} & \text { 5. } 3 m-7 n=p \text { for } m \\ & \qquad m=\frac{p+7 n}{3} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { 6. } 6=h j+k \text { for } j \\ & \qquad j=\frac{6-k}{h} \\ & \hline \end{aligned}$	7. $\frac{v}{w}=9$ for w $w=\frac{V}{9}$	8. $\frac{a+3}{b}=c$ for a $a=b c-3$
Answer each of the following.		
9. The formula $d=r t$ relates the distance an object travels d, to its average rate of speed r, and amount of time t that it travels.$t=\frac{d}{r}$		
b. How many hours would it take for a car to travel 150 miles at an average rate of 50 miles per hour?		
10. The formula $F-E+V=2$ relates the number of faces F, edges E, and vertices V, in any convex polyhedron.		
a. Solve the formula $F-E+V=2$ for F.		$F=2+E-V$
b. How many faces does a polyhedron with 20 vertices and 30 edges have?		12
	35	Holt Algebra 1
sson Practice C		
2-5 Solving for a Variable		
Answer each of the following.		
1. The formula $P=2 l+2 w$ relates the perimeter P of a rectangle to its length $/$ 2. The formula $a=\frac{v_{f}-v_{i}}{t}$ is used to find an object's acceleration given initial and width w. Solve this formula for w. velocity v_{i}, final velocity v_{f}, and time t. Solve this formula for v_{t}		
$w=\frac{P-2 I}{}$		
Solve each literal equation for the variable indicated.		
3. $-3 f=g$ for f $f=\frac{g}{-3}$	4. $12=a+5 b$ for a $a=12-5 b$	$\begin{aligned} & \text { 5. } 3 x-7 y=z \text { for } x \\ & \qquad x=\frac{z+7 y}{3} \\ & \hline \end{aligned}$
6. $\begin{aligned} & 5 h-g=j k \text { for } h \\ & \quad h=\frac{j k+g}{5} \\ & \hline \end{aligned}$	$\text { 7. } \begin{aligned} & \frac{r}{s}=t-9 \text { for } r \\ & \qquad r=s(t-9) \end{aligned}$	8. $\begin{aligned} & \frac{m+3}{n}=p \text { for } n \\ & \quad n=\frac{m+3}{p} \\ & \hline \end{aligned}$
Answer each of the following.		
9. The formula $F=$ ma relates the force F exerted on an object, to the object's mass m, and acceleration a. a. Solve the formula $F=$ ma for a.		
b. Suppose a shot-putter exerts a force of $123.5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$ on a shot that has a mass of 6.5 kg . What is the rate of acceleration of the shot? (The answer will be in $\mathrm{m} / \mathrm{s}^{2}$.)$19 \mathrm{~m} / \mathrm{s}^{2}$		
10. The formula $I=$ Prt can be used to determine the interest / that is earned on a principal amount of money P, when the money is invested at an annual percentage rate r for t years. a. Solve the formula $I=\operatorname{Prt}$ for t. $t=\frac{l}{P r}$		
b. If a couple invests $\$ 5000$ in an account that earns a 3% interest rate, how long will they need to invest it to earn $\$ 1200$ in interest? (Hint: Convert the interest rate to a decimal.)		
	37	Holt Algebra 1

Practice B

Solving for a Variable

Answer each of the following

1. The formula $C=2 \pi r$ relates the radius r of a circle to its circumference C. Solve the formula for r.
2. The formula $y=m x+b$ is called the slope-intercept form of a line. Solve this formula for m.

$$
m=\frac{y-b}{x}
$$

Solve each equation for the variable indicated.

3. $4 c=d$ for c

4. $-10=x y+z$ for x

5. $2 p+5 r=q$ for p

$$
\begin{aligned}
& \frac{p=\frac{q-5 r}{2}}{\text { 8. } \frac{h-4}{j}=k \text { for } j} \\
& j=\frac{h-4}{k}
\end{aligned}
$$

Answer each of the following

9. The formula $c=5 p+215$ relates c, the total cost in dollars of hosting a birthday party at a skating rink, to p, the number of people attending.
a. Solve the formula $c=5 p+215$ for p
$p=\frac{c-215}{5}$
b. If Allie's parents are willing to spend $\$ 300$ for a party, how many people can attend?

17
10. The formula for the area of a triangle is $A=\frac{1}{2} b h$ where b represents the length of the base and h represents the height.
a. Solve the formula $A=\frac{1}{2} b h$ for b

$b=\frac{2 A}{h}$
32 mm

Cogoright © © y Holl: Rinehart and Wiston.
All inght resenved.

Reteach

2-5 Solving for a Variable

Solving for a variable in a formula can make it easier to use that formula. The process is similar to that of solving multi-step equations. Find the operations being performed on the variable you are solving for, and then use inverse operations.

	Operations	Solve using Inverse Operations
$A=I w$ Solve for w.	$\cdot w$ is multiplied by I.	• Divide both sides by I.
$P=2 I+2 w$ Solve for w.	• w is multiplied by 2.	• Add $-2 /$ to both sides. • Then $2 /$ is added.

The formula $A=\frac{1}{2} b h$ relates the area A of a triangle to its base \boldsymbol{b} and height \boldsymbol{h}. Solve the formula for \boldsymbol{b}.

$$
\begin{aligned}
A & =\frac{1}{2} b h & & b \text { is multiplied by } \frac{1}{2} . \\
\left(\frac{2}{1}\right) \cdot A & =\left(\frac{2}{1}\right) \frac{1}{2} b h & & \text { Multiply both sides by } \frac{2}{1} \\
2 A & =b h & & b \text { is multiplied by } h . \\
\frac{2 A}{h} & =\frac{b h}{h} & & \text { Divide both sides by } h . \\
\frac{2 A}{h} & =b & & \text { Simplify. }
\end{aligned}
$$

Solve for the indicated variable.

1. $P=4 s$ for s 2. $a+b+c=180$ for b $s=\frac{P}{4}$ $b=180-a-c$	3. $P=\frac{K T}{V}$ for K $K=\frac{V P}{T}$
The formula $V=\frac{1}{3} / w h$ relates the volume of a square pyramid to its base length l, base width w, and height h. 4. Solve the formula for w.	$w=\frac{3 V}{I h}$
5. A square pyramid has a volume of $560 \mathrm{in}^{3}$, a base length of 10 in ., and a height of 14 in . What is its base width?	$12 \mathrm{in}$.
	Holt Algebra 1

Reteach

2-5 Solving for a Variable

continued
Any equation with two or more variables can be solved for any given variable.

$\text { Solve } \begin{aligned} x & =\frac{y-z}{10} \text { for } y . \\ x & =\frac{y-z}{10} \end{aligned}$	$y-z$ is divided by 10.
$10(x)=10\left(\frac{y-z}{10}\right)$	Multiply both sides by 10.
$10 x=y-z$	z is subtracted from y. Add z to both sides.
$+z+z$	
$10 x+z=y$	
Solve $\boldsymbol{a}=\boldsymbol{b}+\frac{\boldsymbol{c}}{\boldsymbol{d}}$ for \boldsymbol{c}.	
$a=b+\frac{c}{d}$	
$\underline{-b}$-b	Add -b to each side.
$a-b=\frac{c}{d}$	
$d(a-b)=\left(\frac{c}{d}\right) d$	Multiply both sides by d.
$d(a-b)=c$	Simplify.

State the first inverse operation to perform when solving for the indicated variable.
6. $y=x+z$; for z
add $-x$ to both sides
7. $\frac{f+g}{2}=h$; for g multiply both sides by 2
8. $t=-3 r+\frac{s}{5}$; for s
add $3 r$ to both sides

Solve for the indicated variable.

Challenge

A Formula of Interest
When you put your money in a savings account, the bank may pay you simple interest. Let P represent the dollar amount of your deposit (the principal), let r represent the interest rate, and let t represent the number of years. The amount of interest you earn, l, is given by the simple interest formula: $I=$ Prt.

Note that banks typically use percents to describe their interest rates. Percent means "per hundred," so an interest rate of 5% means that you should use $r=\frac{5}{100}$, or 0.05 .

Use the simple interest formula to solve the following problems:

1. If $P=2500, r=0.03$, and $t=5$, what is l ?
2. If $r=0.025, t=3$, and $I=150$, what is P ?
3. If $P=500, r=0.06$, and $I=150$, what is t ?
4. If $P=3000, t=4$, and $I=384$, what is r ?
5. Kevin is making a deposit of $\$ 1800$ at his local bank. The bank pays
6.5\% simple interest $(r=0.065)$. If Kevin leaves his deposit at the
bank for 3 years, how much interest will he earn?
6. Cecelia made a deposit of $\$ 600$ at a bank paying 4% simple interest ($r=0.04$). How long should she leave her deposit at the bank in order to earn $\$ 72$ in interest? \qquad
7. Darryl opened an account at a bank which paid 5.5% simple interest ($r=0.055$). After 6 years, he had earned $\$ 726$ in interest. What was the amount of his original deposit? \qquad
8. Sophia deposited $\$ 150$ at a savings and loan association paying simple interest. If she earned $\$ 27$ in interest after 6 years, what was the interest rate?
0.03 or 3%
9. Nathan made a deposit of $\$ 650$ at a bank paying 3.8% simple interest ($r=0.038$). If he leaves his deposit at the bank for 10 years, how much interest will he earn? \qquad
10. Susie made a deposit of $\$ 980$ at a credit union paying 7% simple interest $(r=0.07)$. How long should she leave her deposit at the credit union in order to earn $\$ 343$ in interest?
11. Guillermo deposited $\$ 1350$ at a bank paying simple interest. If he earned $\$ 109.35$ in 3 years, what was the interest rate?
5 years
0.027 or 2.7%

Copryight eby Hotht,
All tight reserevel.
40
Holt Algebra 1

Reading Strategies

Use a Concept Map
Use the concept map below to help you understand literal equations

Definition	Facts Formulas are literal equations.
Literal equations are equations with two or more variables.	uations are solved the as equations, by
Examples	Non Examples
$d=r t$	$-4 x=20$
$A=\frac{1}{2} b h$	$10=\frac{1}{3}(y-6)$
$m+n=3 p$	$n+5=2 n-14$

Answer each question.

1. Give your own example of a literal equation.

$$
\text { Possible answer: } 3 x+2 y=9
$$

2. Why is $n+5=2 n-14$ given as a non-example?

The equation contains only one variable, n.
3. Is an equation with four different variables a literal equation? Why?

Yes, because it has two or more variables.
4. Describe how to solve $d=r t$ for t.

Divide both sides by r.
5. Solve the literal equation $3 t+8=b$ for $t . \quad t=\frac{b-8}{3}$
6. The formula for the volume of a rectangular prism is $V=/ w h$

> a. Solve this formula for h.
> b. Find the height of a rectangular prism with a volume of $189 \mathrm{~cm}^{2}$, a length of 9 cm , and a width of 7 cm .
$h=\frac{V}{I W}$

42
Holt Algebra 1

