Review for Mastery LESSON

1-8 *Exploring Transformations*

A translation moves a point, figure, or function right, left, up, or down.

Horizontal Translation (right or left)	Vertical Translation (up or down)	
The x-coordinate changes.	The y-coordinate changes.	
$(x, y) \rightarrow (x + h, y)$	$(x, y) \rightarrow (x, y + k)$	

Translate the function y = f(x) left 2 units.

A reflection flips a point, figure, or function across a line.

Reflection Across y-axis	Reflection Across <i>x</i> -axis
The <i>x</i> -coordinate changes.	The <i>y</i> -coordinate changes.
$(x, y) \rightarrow (-x, y)$	$(x, y) \rightarrow (x, -y)$

Reflect the function y = f(x) across the *x*-axis.

Perform each transformation of y = f(x).

1. translation up 2 units

2. reflection across x-axis

LESSON Review for Mastery

1-8 *Exploring Transformations* (continued)

In a stretch or a compression, the new figure has a different shape than the original.

Horizontal Stretch	The <i>x</i> -coordinate changes.	
(away from <i>y</i> -axis)	$(x, y) \rightarrow (bx, y); b > 1$	
Vertical Stretch	The <i>y</i> -coordinate changes.	
(away from <i>x</i> -axis)	$(x, y) \rightarrow (x, ay); a > 1$	
Horizontal Compression	The <i>x</i> -coordinate changes.	
(toward the <i>y</i> -axis)	$(x, y) \rightarrow (bx, y); 0 < b < 1$	
Vertical Compression	The <i>y</i> -coordinate changes.	
(toward the <i>x</i> -axis)	$(x, y) \rightarrow (x, ay); 0 < a < 1$	

Perform a vertical stretch of the function y = f(x) by a factor of 2. In a vertical stretch $(x, y) \rightarrow (x, ay)$. In this case, a = 2.

Original Figure (solid line)	x	2 <i>y</i>	Stretched Figure (dashed line)
(-3, 3)	-3	6	(-3, 6)
(-1, 1)	-1	2	(-1, 2)
(0, 2)	0	4	(0, 4)
(1, 1)	1	2	(1, 2)
(3, 3)	3	6	(3, 6)

Perform each transformation of y = f(x).

3. horizontal stretch by a factor of 2

4. vertical compression by a factor of $\frac{1}{2}$

